
Testing, Optimization, and Games

Mihalis Yannakakis
Columbia University

The Software Reliability Problem

Systems are becoming larger, more complex,distributed,…

⇒ harder to create, get them right, test them …

• Large part of the cost of software development goes to
testing

Problem: Improve cost, time, reliability

Focus: Behavior/Control of Systems

Reactive/Event-driven Systems
– Switching Software
– Communication Protocols
– Controllers
– ….

Model: State Machines of various types

Finite State Machine for Phone

States: Idle, Dial tone, ….
Inputs: off-hook, on-hook, digit, …
Outputs: sound dial tone, loud beep, play message,….

Testing

Test GeneratorSpec.

(eg. Model,

Property)

SystemTest
scenarios

Does the System satisfy the specification?

(conform to the model ? satisfy the property?)

Criteria

Different Views of Testing

• Testing as an Optimization problem
Optimize the use of testing resources to
achieve maximum fault coverage

• Testing as a Game
Tester vs. System
Who wins? Best strategy?

• Testing as a learning problem

Outline
• Testing framework, issues
• Conformance Testing

– Deterministic FSM’s
– Nondeterministic FSM’s

• Testing Properties

• Optimum Coverage problems
– FSM’s, graph models

– Extended FSM’s

– Hierarchical FSM’s

Finite State Machine
a

a

a a

ab

b

b

b

b

Moore machine
•States: s1, …., s5
•Inputs: a, b
•Outputs: red, green - function of the state
•Transitions: for every state and input

Deterministic FSM: one transition for every state and input

Mealy machine: variant where outputs are produced on
transitions instead of states; theory is similar

s1

s5

s4
s3

s2

Test
input

Problem: Given some a priori information about B,
compute a desired function of B

Preset Test: input sequence selected ahead of time

Adaptive Test: inputs selected online adaptively,
i.e. can depend on previous outputs

system
BTester

output

Testing as a Game
• Game:

1. A priori information (“testing hypothesis”): Set U of
possible B’s
2. Desired information: function f of B

• Players:
- Tester: selects inputs, gives verdict at end
- System: Selects B in U, and moves of B in each step (if
B not deterministic)

• Tester wins if verdict=f(B)

• Game with incomplete information

Questions
• Can the Tester always win?

i.e. ∃ strategy (test) that arrives at correct result?

• How fast can we determine if the Tester has a
winning strategy?

• What is the testing complexity = length of the test
(winning strategy)

• and the computational complexity = time to
compute a winning strategy?

Example: Adaptive Distinguishing “Sequence”

a

b

a

b

s1

s4
s3

s2

b

a

a
bGiven: State diagram of B =

a deterministic FSM

Goal: Determine the initial state of B

Example: Adaptive Distinguishing “Sequence”

a

b

a

b

s1

s4
s3

s2

b

a

a
b

ab

s1 s2 s4 s3

adaptive distinguishing “sequence”

= winning testing strategy

FSM

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

a

b

a

b

s1

s4 s3

s2

b

a

a
b

a b

s5

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

• How fast can we determine if the Tester has a winning
strategy?
– O(dnlogn), n=#states, d=#inputs
– For Preset test: PSPACE-complete

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

• How fast can we determine if the Tester has a winning
strategy?
– O(dnlogn), n=#states, d=#inputs

• What is the testing complexity = length of the test
(winning strategy)
– O(n²)

• and the computational complexity = time to compute a
winning strategy?
– O(dn²)

• Preset: Exponential [Lee-Yannakakis]

• Machine Identification Problem:

• Given:

• B is a reduced (minimized) deterministic FSM
(tests cannot tell the difference between equivalent machines)

- and strongly connected
(i.e. any state can reach any other state)

• bound on # states of B

Goal: Identify machine B

Unknown state diagram of black box B

Machine Identification is hard

• Suppose that we know B has n states and
looks like this combination lock machine

a abb

b b a,ba a

combination

Must try all possible combinations: 1−nd

d = # inputs, n = # states [Moore]

• Given: specification FSM A

• Goal: check that B conforms to (behaves like) A
(i.e. B≡A for deterministic FSMs)

• Long History since 50’s [Moore, Hennie,…]

Conformance Testing

Conformance Testing - Deterministic FSM
Assumptions

• Specification machine A is reduced (minimized)
(tests cannot tell the difference between equivalent states)

and strongly connected
(i.e. any state can reach any other state)

• Bound on #states of B

• Checking sequence: If implementation machine B has no
more states than A: detect arbitrary combinations of output,
and next-state faults

- effect of extra states orthogonal

Effect of extra states

Extra factor of , where k =#extra states, d=# inputskd

A

B : combination lock

Questions
• Can the Tester always win?

1. Can test that B has the same state diagram as A
2. But in general may not be able to verify the initial

state (if no reset) even if we know state diagram of B

• Can perform a test such that if B passes it, then
can conclude that B≡A and B is at an equivalent
state at the end of the test

Easy cases

• Spec FSM A is fully observable:
every state has a distinct output ⇒ suffices to
traverse all the transitions

• Spec FSM A has a distinguishing sequence:
3 checking sequence of length ()O dn⇒

[Hennie,LY]

Machines with Reliable Reset

• There is a special input symbol “reset” which takes
every state back to the initial state

• Reliable: works properly in the implementation FSM B

• Then checking sequence of length
• Matching lower bound

reset

reset
reset

)(3dnO

[Vasilevski- Chow]

General machines

• Randomized polynomial time algorithm which,
given a specification machine A constructs with
high probability a checking sequence for A of
length [LY]

• For “almost all” specs A, length O(d·n·polylogn)

• Deterministic algorithm?

)log(4 ndnO

Sketch of (simplified) Test
• Pick a set W of “separating” input sequences such that

every pair of states of the spec FSM A is distinguished by
one of these sequences
– There is always such a set of at most n sequences of length at

most n

Repeat the following “enough” times
• Choose at random a transition (state s, input a)
• Apply an input sequence that takes A from the current

state to state s
• Decide at random whether to check the state of B or

check the transition
– In the first case, apply a random separating sequence from W
– In the second case, apply input a followed by a random separating

sequence from W

A universal traversal problem

Directed graphs with n nodes, outdegree d
1 2

d

• Blocking sequence over {1,...,d}:
For every graph and starting node,
path traverses all edges out of at least one node.

• Random sequences of polynomial length blocking

• Deterministic polynomial construction?
Then deterministic construction of checking
sequence for all spec FSM’s

Nondeterministic FSM

FSM B conforms to FSM spec A if every response to
any input sequence could have been produced by A

Many possible transitions for same input and state

a a

• Nondeterminism in spec A: multiple acceptable choices

• Nondeterminism in system B: some transitions are not
under tester’s control

- abstraction, other entities, concurrency, ..

Example

a

a,b a,b

a,b
a,b

a

a,b a,b

a,b
a,b

Spec A FSM B

a

• B does not conform to A:
On input aa , B may output • • •, but not A

• B may also output • • • or • • • or • • • which are
consistent with A

Distinguishing Between Machines

s

t

Spec A

(correct FSM)

Possible faulty FSM B

Two-player game

• Tester chooses inputs
• System player chooses what’s in the black box

and how to resolve the nondeterminism

• Should we view the system player as trying to
– Help the tester?
– Oppose the tester?
– Indifferent (random)?

a a

Opposing System Player
• Tester has winning strategy ⇔ can find a fault (if present) no

matter how hard the system tries to hide it

⇔ Games with incomplete information against a malicious
adversary

• Game graph of positions, controlled by the two players
• Player 1 gets only partial information about current position
• Goal of Player 1: reach a winning position

Who wins?
preset test: PSPACE-complete

adaptive test: EXPTIME-complete

Polynomial time for NFSM that are input-output deterministic (observable)

[Reif; Alur, Courcoubetis, Y]

Indifferent System player: Random moves

If the system has reliable reset, then easy: can test with
probability →1

B does not conform to A ⇒ for some input sequence α it
can produce (for some nondeterministic path) an output

sequence that can’t be produced by A

Test: Apply repeatedly reset α , reset α, ….

Indifferent System player: Random moves

In general, Game with incomplete information
against “Nature” (a Random adversary)
Partially observable Markov Decision Process
- maximize probability of reaching goal
- can we reach goal a.s.?

Can the Tester win with probability 1 (in the limit)?

Complexities similar to adversarial game –

algorithms different

[ACY]

Testing Properties

Testing Properties
• Given a required property of executions

– e.g., if off-hook then dial-tone; no deadlock …
– between any two green states always a red state

• and a black box B (the system)
Test that B satisfies the property

Model

Property

model checking conformance testing

black box checking
[Peled, Vardi, Yannakakis]

Learning FSM with a teacher

• Algorithm to identify a deterministic FSM using
– “membership queries” (tests) on the black box
– “equivalence queries” to the teacher

• FSM with reset: polynomial algorithm [Angluin]

• General FSM: randomized polynomial algorithm
[Rivest –Shapire]

Black Box Checking

Learning
algorithm

Model
Checker

model

Property

Conformance
tester

Yes
Yes

OK Error track

ok

ctexample

System

ctexample
refuted

ctexample

Optimization

Optimal Coverage Problems

• Find a minimum number of short test sequences
(paths) starting at initial state that cover all
transitions, states

• Applies to FSM models and other graph models
• Use Case (MSC) Graphs: scenario based models

uBET - Lucent Behavior Engineering Toolset

Graph Coverage

• Transition Coverage
Can minimize in PTIME

(1) the number of paths,
(2) their total length, subject to (1)

(or any linear combination of 1 and 2)
- Network flows, Chinese Postman Problem

• State Coverage
Can minimize the number of paths

but not the length
- Asymmetric Traveling Salesman Problem

Extended Finite State Machine

- States
- Variables

(Boolean, arithmetic, …)

- Transitions
input

condition P(vars.)

transformation (vars.)

s t

FSM + variables

- Initial state, variable assignment

Covering Tests for EFSM

• Find minimum number of valid paths that cover
all the transitions of the EFSM

x:=0 x=1

x=0

x :=1

Covering Tests for EFSM

• Find minimum number of valid paths that cover
all the transitions of the EFSM

x:=0 x=1

x=0

x :=1

invalid

Covering Tests for EFSM

• Find minimum number of valid paths that cover
all the transitions of the EFSM

x:=0 x=1

x=0

x :=1

valid

EFSM → Colored Graph

• One color per transition of EFSM

EFSM

Expanded FSM

(no variables)

Find minimum number of paths covering all the colors

Optimization Problems

Given a graph with colored edges

• Find minimum set of paths covering all colors
– Hard (harder than Set Cover)

• Find a path covering maximum number of colors
– Still hard

• Find a path covering at least k colors if ∃ (k fixed)

– Solvable efficiently

Pythia

Toolset for automated test generation for
FSM’s and EFSM’s (Lee & Yannakakis)

Incorporates optimization algorithms

Applications to systems:

PHS, 5ESS INAP, Diamond, H.248

Hierarchical FSM
Nodes are ordinary states or
superstates mapped to lower
level FSMs

Compact representation of large flat FSM

- Useful way to structure large FSM

• Find minimum number of tests to cover all transitions of all
the modules

- Could expand to flat FSM and reduce to colored graph
covering problem

• Much better: Can avoid flattening and can get constant
approximation ratio = nesting depth [Mosk-Aoyama, Yann.]

Conclusions

• Long line of research

• Theoretical and practical interest

• Rich variety of problems

• Connections with different areas (optimization,
verification, learning, games, combinatorics,…)

