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Rounded positions belong to Player |
Square positions belong to Player 2

'

0000

1110

A game is played as follows: in each round, the game is in a position, if
the game is in a rounded position, Player | resolves the choice for the next
state, if the game is in a square position, Player 2 resolves the choice. The
game is played for an infinite number of rounds.




Play : 0000




Play : 0000 0100




Play : 0000 0100 0101




Play : 0000 0100 0101l 1101




Play : 0000 0100 OI10I 1101 ...




Two-player Game Structure

A two-player game structure is a tuple
G = (Q1,Q2,t,0) where:

@1 and Q2 are two (finite and) disjoint sets
of positions

L € Q1 UQ2 is the initial position of the game

0 C (Q1UQ2) x (Q1UQ2) is the transition
relation of the game

We assume that Vg e Q1 UQ2 : 3¢ € Q1 U Q> : 6(q,q")




Plays, Prefixes of Plays




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,
oiGn ... isa playin G if

~

Vi>0:q; € Q1 UQ2




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

Notations
Letw:qoqlqn

w(z) denotes position i

w(0,7) denotes the prefix
up to position |

last(w(0,7)) = w(7)




Plays, Prefixes of Plays

Let G = <Q1,Q2,L,5>,

1) w(0) =1
2) Vi>0:d(w(i),w(i+1))

We denote the set of plays in G by : Plays(G)
and

PrefPlays(G) = {qoq1 ... qn | Fw € Plays(G) AV0 < i <n:w(i)=gq;}
PrefPlays, (G) = {w € PrefPlays(G) A last(w) € Qx}




Who is winning !

Play : 0000 0100 OI10I 1101 ...




Who is winning !
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1110

Play : 0000 0100 OI10I 1101 ...

s this a good or a bad play for Player k!




Who is winning !

0000

1110

A winning condition (for Player k)
is a set of plays

W C (Q1UQ2)”




Game

Two-=-player game structure
+

Winning condition for Player k




Strategies

Players are playing according to strategies.

A Player k strategy in G is a function:

A PrefPIaysk(G) — Ql U QQ

with the restriction that:

Vw € PrefPlays, (G) : d(last(w), A(w))




Outcome of a strategy

w is a possible outcome of the Player k
strategy \ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

w is a play where Player k plays
according to strategy \




Outcome of a strategy

w is a possible outcome of the Player k
strategy \ if

Vi>0:w(i) € Qp:w(i+1) = \w(0,7))

The set of plays that have this property is denoted

Outcomeg (G, \)




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

That is, no matter how the other player resolves his choices, when player
k plays according to )\, the resulting play belongs to W. Player k can
force the play to be in W.




Winning strategy

® Given a pair (G, W)

® We say that Player k wins the game (G, W)
if and only if:

3\ : Outcomer (G, \) C W

We say )\ that is a winning strategy for
player k in the game (G, W)




Winning strategies

Controllers that enforce
winning plays




Safety Games




Safety Game

(G, W) is a safety game if

1Q C Q1 UQo: W ={w € Plays(G) | Vi > 0: w(i) € Q}

That is W is the set of plays that stay
within a given set of positions Q.

Safe(G, Q)




A Safety Game

0101 1101

1010 1110

Does Player |, who owns the rounded positions, have a strategy
(against any choices of Player |l) to stay within the set of states

Q\{1111}|?




Symbolic algorithms to

solve games




Complete lattices

A complete lattice is a partially ordered set (L,<) where every subset of L has a
least upper bound (often called join or supremum) and a greatest lower
bound (often called meet or infimum).

Given M C L, lub(M) is a value of L such that :
(i) forallm e M : m < lub(M) and
(i) for all m’ € L,

if forallm e M :m < m’ then lub(M) = m’

Given M C L, glb(M) is a value of L such that :
(i) for allm e M : glb(M) < m and
(i) for all m’ € L,

if forallme M: m”<mthen m’ < glb(M)




Example of complete lattice

27, the set of subsets of a set S, ordered by set inclusion &

forms a complete lattice.

Its least upper bound is given by union :
lub{Sl, SQ, . Sn} = U{Sl, SQ, Cee Sn}

Its greatest lower bound is given by intersection :
glb{Sl, SQ, aN. . Sn} — ﬂ{Sl, SQ, o o Sn}

The least element of the lattice is () and the largest element is S.
The powerset complete lattice is noted

(2°,C,u,N, S, 0)




Monotone functions and
fixed points

Let (L,C,U,M, T, L) be a complete lattice,let f: L — L.
We say that f is monotone iff

\V/ll,lg cL:[{Cl,= f(ll) L f(lg)

fis Scott- continuous iff LI{f(l)|l e X} = f(LX)
for any chain X.

We say that | is a fixed point of fiff | = f({)

Any monotone function f over a complete lattice L has:
a least fixed point: ifpf =1{l |l = f(I)}
a greatest fixed point:gfpf =U{l |l = f(I)}




Monotone functions and
fixed points

Let (L,C,U,1, T, L) be a complete lattice,let f: L — L.
We say that f is monotone iff

\V/ll,lg c L : [

fis Scott- continuou
for any chain X.

We say that | is a fixed p¢

Any monotone function |}

Monotony is equivalent
to Scott-continuity on
any finite complete
lattice.

a least fixed point: ifpf =1{l |l = f(I)}
a greatest fixed point:gfpf = L{l |l = f(I)}




ed Player k Controllable
Predecessors

X is a set of positions

1CPreg(X) ={qe Q1 |3¢ :0(q,¢)N¢g € X}U{qe Q2 |Vq :0(q,q") : ¢ € X}

/

Set of Player | positions where she has
a choice of successor that lies in X

Set of Player |l positions where all
her choices for successors lie in X




ed Player k Controllable
Predecessors

1CPreq(X)={qe Q1 |3¢ :6(q,¢)Nqg € X}U{qe Q2 |V :0(q,q") : ¢ € X}

Symmetrically

2CPreq(X) ={q€ Q2| 3¢ : 6(q, )N € X}U{qe Q1 |V :6(¢q,¢) : ¢’ € X}




ed Player k Controllable
Predecessors

1CPreq(X)={qe Q1 |3¢ :6(q,¢)Nqg € X}U{qe Q2 |V :0(q,q") : ¢ € X}

Monotonic functions over (291°%2 C)

2CPreq(X) ={q€ Q2| 3¢ : 6(q, )N € X}U{qe Q1 |V :6(¢q,¢) : ¢’ € X}







1CPre(X) =[{0000}|u {0100, 1101}

Rounded positions,
there exists a red successor




1CPre(X) =|{0000}

Rounded positions, Squared positions,
there exists a red successor all successors are red




b Fixed points to solve games

Let Q be a set of safe states, the states in which
Player | can force the game to within Q is given by
the following fixed point expression :

U{R| R=QnCPre(R)}




b Fixpoint for a safety game

0101 1101
1111
1010 1110

Does Player |, who owns the rounded positions, have a
strategy to stay within the set of states

Q\ {1111}]?




Y Fixpoint for a safety game

1111

We must compute

H{R|R=(Q1UQ2)\ {1111} N CPre;(R)}

To do that, we use the Tarski fixpoint theorem.



Tarski-Kleene Theorem

Let (L,C, 1,1, T, L) be a complete lattice, the f be a
Scott-continuous function on L, then

Ifp f is the limit of the sequence :

ALY, L)), o Fo L))o

gfp f is the limit of the sequence :

f(T),f(f(T)), ..., f(...f(T)...), ...




L Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)




L Fixpoint for a safety game




L Fixpoint for a safety game




L Fixpoint for a safety game




L Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
X1 = (Q\ {1111}) N 1CPre(Xp)




L Fixpoint for a safety game

= (Q\ {1111}) N 1CPre(Q)
= (Q\ {1111}) N[LCPre(Xo)




L Fixpoint for a safety game

1101

1110

Xo=(Q\{1111}) N 1CPre(Q)
X1 = (Q\ {1111}) N[LCPre(X))




L Fixpoint for a safety game

1111
1010 1110

Xo = (Q )\ {1111}) N 1CPre(Q)
X1 =[(@\ {1111})|N[1CPre( X))




L Fixpoint for a safety game

1111
110

Xo=(Q\{1111}) N 1CPre(Q)




L Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)

X5 = (Q\ {1111}) N 1CPre[XH)




L Fixpoint for a safety game

&
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Xo = (Q\ {1111}) N 1CPre(Q)

X, = (Q\ {1111}) N[ICPre(X,)




L Fixpoint for a safety game

1101

1110

Xo=(Q\{1111}) N 1CPre(Q)

X, = (Q\ {1111}) N[ICPre(X,)




L Fixpoint for a safety game

1111
1010 1110

Xo=(Q\{1111}) N 1CPre(Q)

X, =[(@\ {1111})|N[1CPre(X,)




L Fixpoint for a safety game

Xo = (Q\ {1111}) N 1CPre(Q)
X1 =(Q\ {1111}) N 1CPre(X,)

A2 —[(Q\ {1111}) N1CPre(X,




L Fixpoint for a safety game

\ _—

0000 1111

1000 - @ ' 1110

Xo = (Q\ {1111}) N 1CPre(Q)
This is the \
greatest X1 = (Q \ {1111}) [ ].CPFG(XQ)

fixed point | 2 :_ = A1




L Fixpoint for a safety game

Xz is exactly the set of positions
| from which Player | can avoid

entering {1111}, no matter how
Player |l behaves.

Xo = (Q\{1111}) N 1CPre(Q)

Thisisthe |+ 0\ 11111}) N 1CPre(X,)

greatest
fixed point




L Fixpoint for a safety game

Xz is exactly the set of positions
| from which Player | can avoid
entering {1111}, no matter how

Player |l behaves.

——

Player | has a positional
(memoryless) strategy
to win the game

're(Q)

greatest

This is the

fixed point | A2 :_







Let G = (Q1,Q2,1,6) be a TGS, let
Reach(G, Q) be a reachability

game defined on G, Player | has a
winning strategy for this game iff

L€ N{R|R=0QUCPre,(R)}

Let G = (Q1,Q2,1,0) be a TGS, let
Safe(G, Q) be a safety game
defined on G, Player | has a winning
strategy for this game iff

L€ U{R| R=QnNCPre;(R)}







) Perfect information hypothesis?

Thermometer

o
_L Digital

Controller

Typical hybrid system




) Perfect information hypothesis?

The temperature
is in the interval

(c—1,c+1)

Thermometer

o
_L Digital

Controller

Typical hybrid system




) Perfect information hypothesis?

Finite precision = imperfect information

The temperature
is in the interval

Thermometer
(c—1,c+1)
ol
_L Digital

Controller

&/

Typical hybrid system




a a
b -- a
1 b
a b |
b

a

Player O chooses a letter
Player | resolves nondeterminism




l
a a
\b@\ a
1 b
a b |
b
a

Imperfect information




a a
b a
1 b
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b
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Imperfect information




a a
b a
1 b
a b
b
a

Imperfect information




a a
b a
1 b
a b
b
a

Slight generalization of
incomplete information

Imperfect information




a a
b a
1 b
a b
b
a

When observing Obs 0,
there is no unique good choice:

memory is hecessary

Imperfect information




Games / Strategies

- A game of imperfect information:
game structure + observation structure

-Observation structure : (Obs,Y) where ODbs is a finite
set of observations and Y maps every observation to a
set of states (we require that every state has at least
one observation).

-A observation based strategy is a function that maps
every sequence 0,0,0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bac.




Games / Strategies

Notation: a game structure of
imperfect information is a tuple

(S,S0,%, —,Obs,Y).

tion structure

nere ODS is a finite

set of observations and Y maps every observation to a
set of states (we require that every state has at least

one observation).

-A observation based strategy is a function that maps
every sequence 0,0/0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bac.




Games / Strategies

Notation: a game structure of

imperfect information is a tuple
SACE CRAE N s BN LS A /)

tion structure

set of

ot of Of perfect information

one olwhere Obs=S and y is the

identity function

Those games generalize games

y finite

jon to a
least

-A obseTvatoT DUsTT SUrategy Is & TurictorT uidt Thaps
every sequence 0,0/0....0. to a letter in 2.

Our objective is to find an algorithm to construct
observation based strategies that avoid Bac.




Games / Strategies

Notation: a game structure of

imperfect information is a tuple
(CC N o Mo/

. fThc>se games generalize games
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Our objective is to find an algorithm to construct
observation based strategies that avoid Bac.




Classical Approaches

® To solve games of perfect information :

® (elegant) fixed point algorithms using a
controllable predecessor operator

® To solve games of imperfect information

® [Reif84] builds a game of perfect
information using a knowledge-based
subset construction and then solve this
games using classical techniques




Classical Approaches

® Jos

® (el
co

® To solve games of imperfect information

® [Reif84] builds a game of perfect
information using a knowledge-based
subset construction and then solve this
games using classical techniques




Classical Approaches

rfect information

e of perfect

nowledge-based
subset construction and then solve this
games using classical techniques




A fixed point algorithm

We define a controllable predecessor operator for a
set of sets of states g

CPre(q) = {-] Jo € X - Vobs € Obs - 3s’ € ¢ : Post,(s) N~(obs) C s}

(ii) there exists os.t. the set of possible successors of s by g is

covered by
(a) no matter how the adversary resolves non-determinism,
(b) no matter the compatible observation Obs







Cpre({A,B})= Blue sets




Maximal sets

If there is a strategy for set A,
there is a strategy for any B included in A

It is enough to keep only
the maximal sets

$0O

CPre(q) = [{s C Bad | 30 € X - Vobs € Obs - 3s’ € q : Post,(s) N~y (obs) C s’}



Antichains

Definition 4 |[Antichain of sets of states]

An antichain on the partially ordered

set (2°,C) is a set ¢ C 2° such that for any A, B € ¢ we have A ¢ B.

Let us call L the set of antichains on S.

Definition 5 [C| Let ¢q,¢ € 22° and define ¢ C ¢/ if and only if

VAcg:JA €q : AC A

lub: g1Uge=[{s|s€q Vsecqg}]

glb: ¢1Mga=[{s1Ns2|s1E€qQNS2Eq}]

The minimal element is (), the maximal element {S}.




CPre over antichains

CPre(q) = [{s C Bad | 3o € X' - Vobs € Obs - 3s’ € q : Post,(s) N~y (obs) C s’}
® CPre is 2a monotone function over
the lattice of antichains
® CPre has a least and a greatest fixed
point

Advantage : we only keep the needed information to find
a strategy




Main theorem

LEt (G = <S, S(),E,%,Obsaqo

be a two-player game of imperfect
information. Player | has a winning
observation based strategy to avoid Bad, iff

{So N~(obs) | obs € Obs} C |_|{q | g = CPre(q)}.

We can extract a strategy from the fixed point




uLB |§ a

Does Player 0 have an observation
based strategy to avoid Bad !




uLB |§ a

Does Player 0 have an observation
based strategy to avoid Bad !

Let us compute the gfp of CPre over L.




uLs =T
; é i d1 = {{17273}01,,17}




d1 = {{1 2 3}a b}

= CPre({{1,2,3}})




d1 = {{1 2 3}a b}




qgo = |
d1 — {{17273}a,b}

Indeed,

Post,, ({1,3}) N {1,2,4} C {1,2,3}
Post, ({1,3}) N 41,3} C{1,2,3}
DOStb({Q}) a {17 3} C {17 2, 3}
Post, ({2}) N {1,2,4} C{1,2,3}




d1 = {{1 2 3}a b}
= 12}5,11,3}a}

= CPre({{2}, {1,3}})




d1 = {{1 2 3}a b}
= 12}5,11,3}a}

= CPre({{2}, {1,3}})
—-{{1}a,{2}b,{3} }




d1 = {{1 2 3}a b}
= 12}5,11,3}a}

Indeed,

— CPre({{2},{1,3}}) Post,({1}) N {1,2,4} C {2}
{1}, {2, {31, Post,({1}) N{1,3} C {3}

Adding any state would
break this property




qo = T
d1 = {{17273}01,,19}
42 — {{Q}ba {17 S}a}

g3 = {{1}a, {2}, {3}ta}
qa — {{1}a7 {2}67 {3}(1}

Fixed point




go = |

d1 = {{17 2, S}a,b}
b a q2 — {{2}b7 {17 S}a}
b a3 = {{1}a; 1210, {3}a}
. g i X gs = {{1}a,{2}0, {3}a}
b

Fixed point

We have
{{2,3} N Obsy,{2,3} NObs;} E LI{q | ¢ = CPre(q)}

and so, Player 0 has an observation
based winning strategy to avoid Bad




go = |

ULB |§ a
1 ={1,2,3}ap}
i j 42 = 112}p: 11, 3}a}
1 i 93 = 111}as 1240, 1310}
a b s = {{1}a;12}6,13}a}
] /@ b Fixed point

We can extract a strategy from the fixed point




qo = T
d1 = {{17273}a,b}
42 — {{Q}ba {17 S}a}

g3 = {{1}a, {2}, {3}ta}
qa — {{1}a7 {2}67 {3}(1}

Fixed point




Complexity for finite
state games

® The imperfect information control problem is
EXPTIME-complete

® There exist finite state games of incomplete
information for which the algorithm of
[Rei84] requires an exponential time where
our algorithm needs only polynomial time




Complexity for finite
state games

® The imperfect information control problem is
EXPTIME-complete

® There exist finite state games of incomplete
information for which the algorithm of

[Rei84] requires 3 We compute exactly
our algorithm ne¢ what is needed to
control the system
for a given objective




d Infinite state games

We drop the assumption that S if finite
Our fixed point algorithm will terminate if

There exists a finite quotient of the state space
Post, Enabled,”) are definable using this quotient

Application : Discrete Time Control of RHA




Player | (contr.) chooses an action every | time unit
Player 2 (env.) resolves nondeterminism
(in discrete and continuous steps).




Discrete time control of RHA

Everything else
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Another application:
avoiding determinization

when testing
universability of NFA




Universality of NFA




Universality of NFA

Consider a game played by a protagonist and an antagonist

The protagonist wants to establish that A is not universal.

T he protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.




Universality of NFA

Consider a game played by a protagonist and an antagonist
The protagonist wants to establish that A is not universal.

T he protagonist has to provide a finite word w such that no
matter how the antagonist reads it using A, the automaton
ends up in a rejecting location.

—= This is a one-shot game.

The game is turn-based: the protagonist provides the
word w one letter at a time, and the antagonist updates
the state of A. The protagonist cannot observe the state

chosen by the antagonist.

—— This is a blind game (or game of null information).




Let A= (Loc,47,2-,64, F).

Consider the following controllable predecessor operator
over sets of sets of locations. For g C 2Lo¢ |et:

CPre(q) ={s|3s'cq-Joe X -Ves-Vl ecloc:64(0,0,0) — ¢ €5}

So s € CPre(q) if thereis a set s’ € g that is reached from any
location in s, reading input letter o, that is Post,(s) C s’.

— (Pre encodes the blindness of the game.




Let A= (Loc,¥7,2-,64, F).

T heorem:

{0;} € px.(CPre(x) U {T})
ifF
Protagonist has a strategy to win G
ifF

A is not universal

Claim: For sy C so, if Posty(s5) C s’ then Post,(s7) C s
and if so» € CPre(-), then s; € CPre(-)

Idea: Keep in CPre(x) only the maximal elements.




Universality - Experimental results (1)

e \\We compare our algorithm Antichains with the best(1)
known algorithm dk.brics.automaton by Anders Mgller.

(1) According to "D. Tabakov, M. Y. Vardi. Experimental Eval-
uation of Classical Automata Constructions. LPAR 2005".

e We use a randomized model to generate the instances
(automata of 175 locations). Two parameters:

— Transition density: » > 0

— Density of accepting states: 0 < f <1




Universality - Experimental results (2)

Time dk.brics.automaton

Time Antichains

Each sample point: 100 automata with |Loc| = 175, > = {0, 1}.




Universality - Experimental results (3)

| | | |
Antichains

dk.brics.automaton

~
0p)
—
()
£
4+
-
9
4+
5
O
)
X
L]

| | | | |
500 1000 1500 2000 2500 3000 3500 4000

Number of states

e Iransition density: r = 2.
e Density of accepting states: f = 1.




Works also for

® |anguage inclusion between NFA

® emptiness of AFA

® See proceedings of next CAV !

(joint work with Martin De Wulf, Laurent Doyen and Tom Henzinger)




Conclusion/Perspectives

We propose a lattice theory to solve games of imperfect
information, those games are needed to make the synthesis of
robust controllers (= finite precision).

Our technique computes only the information that is needed to
find a winning strategy, i.e. we avoid the explicit subset
construction.

Applicable to discrete time control of RHA and useful to
solve efficiently classical problems for NFA and AFA.

Perspectives : continuous time control, finite automata on infinite
words, efficient implementation issues, etc.
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