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Cryptographic Protocols

Protocol
— rules describing message exchanges
Goal

< secure communications: secret, authentication, anonymity ...

Applications
< mobile phones, electronic voting, homebanking, electronic commerce, . ..
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Symmetric key and public key encryption
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The Needham-Schroeder protocol (1

B: {A7 Na}pub(B)
A: {Na, Np}puna)
B: {Nb}pub(B)
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The Needham-Schroeder protocol (1

B: {A7 Na}pub(B)
A: {Na, Np}puna)
B: {Nb}pub(B)
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Questions
@ Is N, a shared secret between A et B?

@ When B receives { Np},up(5), does this message really come from A?
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The Needham-Schroeder protocol (19

B: {A7 Na}pub(B)
A: {Na, Np}puna)
B: {Nb}pub(B)

> W
U

Questions
@ Is N, a shared secret between A et B?

@ When B receives { Np},up(5), does this message really come from A?

An attack has been found on this protocol 17 years after its publication !
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Attack on the Needham-Schroeder protocol

Agent A Intruder /
A — B N {Na7A}pub(B)
B — A {Na Np}ouna)
A — B {Np}pubs)
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Attack on the Needham-Schroeder protocol

{N37 A}pub(l)

R

Agent A Intruder /
[ ] A — B . {Ne,A}pub(B)
B — A : {N37 Nb}pub(A)
A — B {Nbo}ounp)
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Attack on the Needham-Schroeder protocol

{NavA}pub(l) - {NavA}pub(B)

Agent A Intruder /
[ ] A — B . {Ne,A}pub(B)
B — A : {N37 Nb}pub(A)
A — B {Nbo}ounp)
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Attack on the Needham-Schroeder protocol

{NavA}pub(l) - {NavA}pub(B)
< {Na, Nb}oub(a)

Agent A Intruder /
A — B : {NaaA}pub(B)
e B — A {Nen Nb}pub(A)
A — B : {Np}pub(s)
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Attack on the Needham-Schroeder protocol

{NavA}pub(l) - {NavA}pub(B)
< {Na, Nb}pub(a) < {Na, Nb}oub(a)

{Nb}pub(n)
Agent A Intruder /
A — B . {Ne,A}pub(B)
B — A : {Nabe}pub(A)
e A — B :{Np}pubB)
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Attack on the Needham-Schroeder protocol

{NavA}pub(l) - {NavA}pub(B)
< {Na, Nb}pub(a) < {Na, Nb}oub(a)
{Nb}pub(n) 5 {Nb}pub(B)
Agent A Intruder /
A — B . {Ne,A}pub(B)
B — A : {N37 Nb}pub(A)
e A — B :{Np}pubB)
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Attack on the Needham-Schroeder protocol

{Na7A}pub(l) - {NéhA}pub(B)
< {Na, Nb}pub(a) < {Na, Nb}pub(a)
{Nb}pub(r) {Nb}pub(B)
Agent A Intruder /

Answers

@ Is N, a shared secret between A et B?
— No
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Attack on the Needham-Schroeder protocol

{NavA}pub(l) {NavA}pub(B)
< {Na, Nb}pub(a) < {Na, Nb}oub(a)
{Nb}pub(n) 5 {Nb}pub(B)

R

Agent A Intruder /

Answers

@ Is N, a shared secret between A et B?
— No

@ When B receives { Np},up(5), does this message really come from A?
— No

Remark: The encryption algorithms have not been broken
< the flaw is in the logic of the protocol
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Formal methods and cryptographic protocols

Security protocols are 3 line programs that people still manage to get wrong
Roger Needham
For more security protocols, attacks and info consult

SPORE (Security Protocols Open Repository)
http://www.lsv.ens-cachan.fr/spore/index.html

Need for rigorous methods to analyze and proof protocols correct, preferrably
automated

Seminal paper by Dolev and Yao in 1981 defines an abstract model for reasoning
about security protocols [DolevYao81]
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Adversaries a la Dolev-Yao

@ Protocol messages are modelled using abstract term algebras
— perfect cryptography assumption: “A message can only be decrypted if
the right decryption key is known"”
o the adversary has complete control of the network
— all messages are sent to the intruder; hence the intruder can
9 remove message

o alter messages
@ insert new messages which he can construct

@ the intruder can initiate new sessions
< the intruder decides who executes a protocol with whom: any number
of interleaved sessions
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Modelling messages using abstract term algebras

Term algebra

@ a signature X with a finite set of function symbols {fi,..., 7}, each given
with its arity ar(f;); constants are functions with arity 0

@ an infinite set of names: A/
@ an inifinite set of variables: X

@ terms are generated by the following grammar

T == term
| x variable x € X
| a name a € N/
|  f(T1,...,Tk) application of function symbol f €
(ar(f) = k)

names(T) and vars(T) denote the set of names and variables of term T

A term T is said to be ground when vars(T) = 0.
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Examples of terms

Let ¥ = {enc, dec, pair, fst,snd} such that
o ar(enc) = ar(dec) = ar(pair) = 2
o ar(fst) = ar(snd) =1
Examples
o t; = enc(m, k) is a ground term (names(t;) = {m, k} and vars(t) = ()
o t, = dec(snd(pair(x, enc(m, k))), k) where names(t>) = {m, k} and

vars(tz) = x

We would like to give a semantics to terms such that
dec(snd(pair(x, enc(m, k))), k) and m are equivalent
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Semantics of terms via equational theories

Let E be an equational theory over the symbols in .

Example: Consider the following equational theory E

dec(enc(x,y),y) =
enc(dec(x,y),y) =
fst(pair(x,y)) =
snd(pair(x,y))

7

< X X X

E partitions the set of terms generated by ¥ into (an infinite number of)
equivalence classes. When two terms M and N are in the same equivalence class,
this is noted M =g N.

Example:
We have that dec(snd(pair(x, enc(m, k))), k) =g dec(enc(m, k), k) =g m
(while dec(snd(pair(x, enc(m, k))), k) # m)
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Free term algebras vs explicit destructors

Many works consider a free term algebra, rather than equational theories
@ each term has a unique representation

@ no explicit destructors

Example
Semantics are given by intruder deduction rules

T  enc(a, k) TFk
TFa

The destructor symbol dec does not exist explicitly and hence a term dec(t, k)
does not exist either
Here we consider explicit destructors

@ some attacks are not discovered without explicit destructors [Millen03],
[MeadowsLynch04]

@ protocol specification is easier and more natural
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Difficulties in the automated verification

@ equational theories: even =g may be M /l\ilP
undecidable ... +1"

@ the intruder can construct an infinite O/ Py
number of messages: infinite branching : Moy . My .

@ the intruder can initiate an unbounded o’ ke
number of sessions: infinite depth ' :

Deciding secrecy of a term is undecidable in general!
Possible approaches
@ loose termination and/or completeness

@ take restrictions: particular equational theories, bounded number of sessions,
passive adversaries
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Outline

@ Introduction

© Passive adversary

© Active adversary with finite number of sessions

@ Active adversary with unbounded number of sessions

© Conclusion and perspectives

MOVEP'06
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© Passive adversary
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Deducibility: is a given term secret?

Let o = {xy = T1,...,x, = T,} be a substitution where T; are ground terms
observed by the intruder and dom(y) = {x1,...,xn}.

The variables xi, ..., x, are handles by the means of which the intruder accesses
the corresponding terms.

Definition : deducibility

A ground term T is deducible under an equational theory E from
p=1{x1=Ty,...,x, = T,}, denoted ¢ g T, iff there exists a term M such that
vars(M) C dom(y) and names(M) N names(¢) = () and My =g T.

Exemple:
v ={x1 = enc(m, k),x, = k}
We have that ¢ g m as dec(xy, x2)p = dec(enc(m, k), k) =g m.
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Notations for manipulating terms

The set of positions Pos(t) of a term ¢t is inductively defined as follows

{e¢} (xeX,neN,c/0eX)
{6} Ui<i<n I - POS(t,')

Pos(x) = Pos(n) = Pos(c)
Pos(f(ty,...,tn))

Example @
Let M = pair(c, enc(pair(c, k), k))

Pos(t) = {¢,1,2,21,22,211,212} 1 2
t|, denotes the subterm of t rooted at position @l \@
p, e.g. My = pair(c, k) 1,

\
t[s], denotes the term in which t|, has been @

replaced by s, e.g. M[c]o1 = pair(c, enc(c, k))

st(t) = {t|p | p € Pos(t)} are the subterms of d b

t (also extended to sets of terms)
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Compact representations of sets of terms

Sets of terms can be represented in a compact way as DAGs with maximal sharing
The DAG (V, E) representing the set of terms T is defined as

o V=st(T)U{e}

™ Ez{vs—i> Ve | Ve, Ve €V, vs = f(ty,... ty),ve = ti}U{e Sv|veT}

The DAG representing T graph has n + 1 vertexes and at most ((n— 1)« m) +n
edges where n = [st(T)| and m is the maximal arity of function symbols

Example

={ pair(ky, pair(ka, k3
enc(pair(ka, k3), k kl /.iz *

|| T||lg denotes the DAG-size of the set of
terms T

-
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Term rewriting systems

Given an equational theory E = {/; = r;}, we associate to E the TRS
Re ={li — ri}
Givena TRS R

@ t —x sif | = r € R and there exists a position p of T and a substitution o,
such that t |,= /o and s = t[ro],

9 —7 is the reflexive, transitive closure of —¢
@ R is terminating if there exists no infinite chain t; —x to —x ...

o R is confluent if for all t1, to, t3, such that t; —7 t», t; —7 t3, there exists
ta, such that t; —% ts and t3 —7; ts.

@ R is convergent if both confluent and terminating
@ A term tis in R-normal form if there is no term s such t — s

9 t =5 | is the normal form of s if s =% t and t is in R-normal form
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Convergent public collapsing equational theories

Definition [Convergent public key collapsing] [DelauneJacquemard04]
An equational theory E is convergent public key collapsing if Rg is convergent
and for any rule / — r € Rg

o r € vars(¢) or r is ground and Rg-normal

o if £ =1f(ly,...,¢,) then for any position p in ¢; (1 <i < n), such that
lilp = g(t1, ..., tm) either g(t1,..., ty) is ground and Re-normal or there
exists j (1 <j < m), such that tj = r

Examples:
v/ Pairing: fst(pair(x,y)) = x, snd(pair(x,y)) = y
v/ Symmetric encryption: dec(enc(x,y),y) = x
v/ Probabilistic symmetric encryption: dec(enc(x,y,r),y) = x
X XOR: x®x=0,x®0=x, xBy=yDx, xpy)oz=x®(y D 2)
X Blind signatures: unblind(sig(blind(x, r),y), r) = sig(x, y)
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Locality lemma

Locality lemma following

Let E be a convergent public collapsing theory, ¢ = {x; = My, ..., x, = M,} and
@ Fg T. Every minimal size proof M is such that for any t € st(My), we have
that t |g.€ st({M1,... .M} U{T}U{c | ce€ X, ar(c)=0}).

Proof: The proof is done by induction on M. The difficult case is when a
destructor is applied: done by a case analysis on the conditions on the TRS.

Example

Let ¢ = {x1 = enc(a, k1), xo = pair(ki, ka)}. We have that ¢ kg a, because of
the (minimal size) proof M = dec(xi, fst(x2)). The proof indeed only includes
subterms of ¢ and T. We have that My = dec(enc(a, k1), fst(pair(ki, k2))) and

st(Myp) ={ dec(enc(a, ki), fst(pair(ki, k2))) | r= a, enc(a, ki), a, ki,
fst(pair(kl, kz))lRE: kq, pair(kl, kg), ko }
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Deciding deducibility

Let o = {x3 = M1,...x, = M,}. Let t be a ground term. When E is convergent
public collapsing ¢ Fg t can be decided in polynomial time in [[{My, ..., M,, t}||4.

Proof: Due to the locality Lemma the proof contains only subterms of ¢ and t or
constants. Define the set of Horn clauses

:>p(5) ‘SE{M1 LRE,...,M,, lRE}
ors/0eX
S=2% p(s1),---,p(sn) = p(f(s1,...,5n) Ire) |s1,---,Snf(S1,...,5n) | Rg

E St({M:l?' . 'aMﬂ7.y})7f E Z
p(t lrg) =

We have that ¢ Fg t iff S is not satisfiable. HORN-SAT can be dedided in linear time in
|S| and |S]| is polynomial in |[{M4, ..., My, t}||a (the degree is the maximum arity of ¥).

Many other results for different families of equational theories:
[Comon-LundhTreinen03], [AbadiCortier04], [LafourcadelLugiezTreinen04], ...
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Outline

© Active adversary with finite number of sessions
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Representing protocols as roles

Represent the local view of the protocol

Role A
receive(xy)
protocol step 1 {M} =Ni, ... M =N}
send(ty)
receive(x,)
protocol step n {MP = N7,....M] = Np}
send(t,)

We suppose that vars(M], N/, t;) C {xk | k < i}.

A scenario is a finite set of roles
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Example: the Needham Schroeder protocol

A— B : enc(pair(Na, pk(A)), pk(B))
B — A : enc(pair(Na, Ng), pk(A))
A— B : enc(Ng,pk(B))

Rolel(Na, A, pkB) Role2(Ng, B)

recv(x?)
send(enc(pair(Na, pk(A)), pkB)) send (enc(pair(fst(dec(xi, sk(B))), Nig),
snd(dec(x7, sk(B)))))

recv(xi) recv(x3)
{ist(dec(x},sk(A))) = Na} {fst(dec(x3, sk(B))) = Ng}
send(enc(snd(dec(xi, sk(A))))) send(enc(snd(dec(x3, skA))))

Scenario: {Rolel(nal, a, pk(b)), Rolel(na2, a, pk(i)), Role2(nb, b)}
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Concrete semantics

A configuration is of the form ry, ... 1y, @

Concrete execution step

Myeiislivee sty @ =, o0 I @
o r; = recv(x),{M; = N}, send(t).F;
@ ¢ g m, such that Mj{x = m} =g N;j{x = m}
0 ¢/ =po{y=t{x=m}}
o rl =F{x=m}
Given a scenario {r1, ..., r,} the initial state corresponds to ri, ..., r,, ¢, where

¢o represents the intital knowledge of the intruder, e.g. public keys, identities, ...

Insecurity of the protocol w.r.t. a secret s: a configuration ry,...,r,, @ is
reachable, such that ¢ Fg s
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Infinite state system

The concrete semantics yields an infinite state system

'7"'7rn7¢0

interleaving 1 interleaving 2

rl""u(;i{X{:mi}""ur"’(ls’i n,... '{X{ZITTQ},...7rn7¢£
r17"'7Fl'{X{:mg}v"'7rn7¢£ r1,...,?j{X{:fTT£}),...,r,,,¢§

The resulting transition system
@ infinite branching: the intruder may deduce an infinite number of terms

@ exponential number of interleavings
@ each path is finite (fixed number of roles, each finite)

MOVEP'06
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Symbolic semantics and lazy intruders

Main idea: keep variables and constraints instead of ground messages
An intruder constraint is either ¢ |- x or an equation M = N
A symbolic configuration: ry,...,r,,C, ¢
Symbolic execution step: ri,...,ti, ..., C, 0 —r, ..., rl ... 1 C ¢
o r; = recv(x),{M; = N;},send(t).r]
o ' =CU{olFx}U{M; = N;}
° ¢ =¢go{y=t}
The symbolic transition system has only one branch per interleaving

The intruder instantiates variables lazily
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Intruder constraint systems

Any interleaving of roles leads to an intruder constraint sytem is of the form

¢0 ”‘ X1
m=¢poo{n=tut IF x
pp=¢10{yp =1t} IF x3

d)n = (ybn—l o {yn = tn} IF Xn
{M =N}

A solution of C is a grounding substitution o, such that ¢; Fg x; (1 <j < n) and
Mo =g No.
o is a solution iff it yields a valid concrete execution

To decide the secrecy of a term s, add an additional constraint

Ont1 = ¢p o {)/n+1 = tn+1} IFs
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Deciding insecurity

Deciding insecurity with respect to a secret s in presence of a convergent public
collapsing theory is NP-complete.

NP-easy
@ guess an interleaving of the roles
@ construct the corresponding constraint system
@ solving the constraint sytem is in NP [DelauneJacquemard04]

NP-hard

Let Xi,..., X, be propositional variables and consider the following instance of
3-SAT: Arcicm(Xafy V Xaia vV X53) where €;; € {0,1} and X! = X and

X0 = -X.

Consider X = {T/0, L/0, tup/n,m1/1,...,mn/1,—/1,A/2,V/2} and the expected
convergent public collapsing equational theory

recv(x), {A\1<i<m(Ta; . (X))t V T, ,(x)92 V 7o, ,(x)92) = T}, send(secret)
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Constraint solving procedure

Initially: D=0 and S =10

C;D;S)
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Constraint solving procedure

Initially: D=0 and S =10

(C;D;S)

Narrowing
Syntactic Unification

Narrowing
Cu{e[u)};D: S e is an equation or an intruder constraint,
L ¢ — ris a fresh variant of a rule of REg,
CuU{e[r]};Dn; SnUn 1 = mgu(LS, uS),
root(£) = root(u).

Cu{th=thD;S Syntactic Unification
C;Dn;SnuUn n = mgu(t;S, t8).
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Constraint solving procedure

Initially: D=0 and S =10

Blocking
(C;D;S)
Narrowing
Syntactic Unification
Cu{c}:D;S Blocking
C;DU{cS}H S ¢ is an intruder constraint.
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Constraint solving procedure

Initially: D=0 and S =10

Blocking
(C;D; S)
Narrowing Var. Elim.
Syntactic Unification Ground

C;:D;S
C;Dlx =1t];S[x =t]U[x =1t]

C;DU{TIFu}; S
C;D; S

S. Kremer (LSV, ENS Cachan)

Verification of Cryptographic Protocols

Variable Elimination
x € vars(D), t € st(D) \ vars(D),
there is no occurence of x in t.

Ground
if THg u.
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Constraint solving procedure

Initially: D=0 and S =10

Blocking
(C;D;S)
Narrowing Var. Elim. Solution
Syntactic Unification Ground
C:D:S Variable Elimination
CiDx = t:Sx — U x = €] x € vars(D), t € st(D) \ vars(D),
' ' there is no occurence of x in t.
C;DU{TIFu};S Ground
C;D; S if The u.

Finally: C =0 and D = ) if a solution exists
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Tools based on constraint solving

Several tools exploit similar ideas based on constraint solving

@ Constraint solver by Millen and Shmatikov
http://www.csl.sri.com/users/millen/capsl/constraints.html

@ CoProVe - Constraint-based Security Protocol Verifier: optimised and
extended version by Corin and Etalle

http://wwwes.cs.utwente.nl/coprove/

@ AVISPA tool suite - Automated Validation of Internet Security Protocols and
Applications: several tools are based on constraint solving

http://www.avispa-project.org/
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Outline

@ Active adversary with unbounded number of sessions
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Horn clauses

A Horn clause is a logical formula of the form

Ly,..., L,
“T’ (=-LV...V-l,VL)

First order Horn clauses provide a simple and uniform formalism to

@ model abilities of the attacker

@ model the rules of the protocol
@ verify an unbounded number of sessions: the intruder can create new sessions

Horn clauses are for instance used as a low level representation (translation from a
high-level language to Horn clauses) in the ProVerif tool [Blanchet2001]

http://www.di.ens.fr/“blanchet/crypto.html
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T e= term

|  x variable x

| a[T1,..., Ty name a

| f(Ty,..., Tk) application of f € ¥ (ar(f) = k)
F o= facts

| p(Mq,....M,) application of predicate p
R == rule

|

FiAN...NF,— F implication
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Intruder capacities as Horn clauses

To model the capacities of the intruder

@ introduction of a special predicate /(m) to model intruder knowledge

@ [(m) is true iff the intruder knows message m

Let f € X be a function symbol with ar(f) = n. f is modeled by the rule

I(x1), ..., 1(xn)
1(F(x1, .y Xxn))

Suppose that we are given the equational theory E and the associated rewriting

system Rg. E est modeled by the rules

where ¢ — r € Rg

Initial knowledge: if a ground term t is initially known we add the rule /(t)
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Example: Intruder capacities

Consider the signature
Y = {enc/2,dec/2, pair/2, fst/1,snd/1}
and the (convergent) equational theory

E = {dec(enc(x,y),y) = x, fst(pair(x,y)) = x, snd(pair(x,y)) = y}

We obtain the following rules

I(x) 1(y) I(x) 1(y) I(x) 1(y) I(x) 1(x)
I(enc(x,y)) I(dec(x,y)) I(pair(x,y)) 1(fst(x)) 1(snd(x))

I(dec(enc(x,y),y) I(fst(pair(x,y)) I(snd(pair(x,y))
I(x) I(x) I(y)
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Protocol rules as Horn clauses

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

A — B . {NavA}pub(B)
B — A {Na Np}puna)
A I B : {Nb}pub(B)

I(pk(x))
I(enc((Nalpk(x)], pk(sAl])), pk(x)))

I(encrypt((x,y), pk(sB[])))
I(encrypt((x, Nb[x, y]),y))

I(pk(x)), I (encrypt((Na[pk(x)], y), Pk(sAll)))
I(encrypt(y, pk(x)))

Initiating a new session

The intruder chooses with whom A starts the protocol
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Protocol rules as Horn clauses

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

A — B {N;A}puns)
B — A . {N37 Nb}pub(A)
A — B . {Nb}pub(B)

I(pk(x))
I(enc((Na[pk(x)], pk(sAl])), Pk(x)))

I1(encrypt((x,y), pk(sB][])))
I(encrypt((x, Nb[x, y]),y))

I(pk(x)), I(encrypt((Na[pk(x)], y), pk(sAll)))
I(encrypt(y, pk(x)))

Modelling fresh values

Fresh values are functions of the “parameters” of the protocol
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Protocol rules as Horn clauses

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

A e B N {NavA}pub(B)
B — A {Na Np}puna)
A I B : {Nb}pub(B)

I(pk(x))
I(enc((Na[pk(x)], pk(sAl])), pk(x)))
I(encrypt((x,y), pk(sB][])))
I(encrypt((x, Nb[x, y]),y))

I(pk(x)), I (encrypt((Na[pk(x)], y). Pk(sAll)))
I(encrypt(y, pk(x)))
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Protocol rules as Horn clauses

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

A e B N {NavA}pub(B)
B — A {Na Np}puna)
A — B {Np}pu(s)

I(pk(x))
I(enc((Na[pk(x)], pk(sAl])), pk(x)))
I(encrypt((x,y), pk(sB][])))
I(encrypt((x, Nb[x, y]),y))

I(pk(x)), I (encrypt((Na[pk(x)]. y), Pk(sAll)))
I(encrypt(y, pk(x)))
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Approximations

Modeling security protocols by Horn clauses introduces approximations

o fresh values are modelled as names, which are functions of previously received
values

if the intruder sends the same previous value, the same “fresh” name will be
used

@ there is no order on the rules

for instance a protocol step can be executed several times
These approximations can lead to false attacks

In practice, false attacks are very seldom

The approximations are correct

If a correction proof is given in the model of Horn clauses, the protocol is
also correct in a precise model
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Derivability

Definition [Implication between rules]

(H1 — C1) = (H2 — () iff there exists a substitution o such that C;o = G and
Hio C Hy (H; and H, are sets of hyotheses)

Definition [Derivability]
Let F be a ground fact and B a set of rules. F is derivable from B iff there exists
a finite tree such that

all nodes (except the root) are labelled by a rule R € B

edges are labelled by facts

if a tree contains a node labelled by a rule R with an incoming edge, labelled
Fo and n outgoing edges labelled Fy,...,F, then R = {Fy,....,F,} — Fo

4. The root has an outgoing edge labelled by F
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A ground term S is secret if it is not possible to derive the fact /(S) from the

rules describing the intruder capacities and the protocol rules

Example
Suppose that we are given the following rules

1) A I(y) = 1((x,¥)) (1) I(m[]) (4)
I(x) N(y) — I(encrypt(x,y)) (2) I(nf])  (5)
I(pk(sA[])) (3)

We can derive /(encrypt((m][], n[]), pk(sA[]))) as follows:
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Automatisation 7

Given a set of rules (Horn clauses), can a fact F be derived from these rules
This problem corresponds to the problem solved by Prolog

But: the classic Prolog resolution algorithm does not terminate given classical
rules used in cryptographic protocols

In [Blanchet2001], Blanchet presents a novel resolution algorithm which “guides”
the resolution and is well suited fro cryptographic protocols
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Preliminary definitions...

Definition [rule combination]

Let R=H — Cand R" = H" — C’ be two rules. We suppose that there exists a
fact Fo € H’, such that Fy and C can be unified, and o is the most general unifier
for C and Fy. Then

Rog R =(HU(H'\ Ry))o — C'o

Example:
R = I(pk(x)) — I(encrypt(sign(msg][], skA[]), pk(x)))
R’ = I(encrypt(m, pk(sk))) A I(sk) — [(m)
Let Fo = /(encrypt(m, pk(sk)). Then
Rofg, R = I(pk(x)) A I(x) — I(sign(msg[], skA[]))

where o = {sk = x, m = sign(msg]|], skA[]) }
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Guiding the algorithm

Let S be a finite set of facts. We say that F €, S iff there exists a substitution o
of variables by other variables such that Fo € S.

In the algorithm S will guide the choices for combining rules: one does not
combine R and R’ by Rog, R'if Fp €, S

Example: By default S = {/(x)} to avoid the following situation. Suppose
I(x) &, S and consider the rules

I(x) — I(pk(x)) (1)
I(pk(x)) A I(y) — encrypt(y,pk(x)) (2)

If we apply the combination (2) o;(,) (1) we obtain
I(pk(x)) A I(y) — pk(encrypt(y, pk(x))) (3)
We can then apply the combination (3) o;(,) (1) and obtain
I(pk(x)) A 1(y) — pk(pk(encrypt(y, pk(x))))  (4)

The successive combinations do not terminate. Similar problem if Fo = I(y).

S. Kremer (LSV, ENS Cachan) Verification of Cryptographic Protocols MOVEP'06 43 / a9



Resolution algorithm : phase 1

B if IR € B,R' = R

Let add(R, B) = { {RYU{R'€e B|R# R'} else

Let By be the set of rules describing the protocol and the intruder
1. Forall R € By, B = add(R, B)
2. LetReB,R=H— Cand R" € B, R" =H — (C’. Suppose there
exists Fg € H' such that
(a) Rog, R is defined
(b) VFeH,Fe, S # by default S = {/(x)}
) Fo&s
Then B = add(R of, R', B)
Execute step 2. until reaching a fixed point
3. B={(H—C)eB|VFeH,Fe S}

After executing phase 1, we have that a ground fact F can be derived from B’ iff
F can be derived from By
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Resolution algorithm : phase 2

derivablerec(R, B")
1. derivablerec(R,B"”) =0 if 3R’ € B".R' = R  # loop: backtrack
2. else, derivablerec() — C,B"”) = {C} # proof of C

3. else, derivablerec(R, B”) = U{derivablerec(R' of, R),{R}UB" | R' €
B', F, is such that R’ of, R is defined}

derivable(F) = derivablerec({F} — F,0})

Intuitively,
@ the hypotheses of R contain the facts that we are currently trying to prove
@ the conclusion of R is an instance of F that we initially wanted to prove

@ the set B” contains the rule already encountered during the search

F is derivable from By iff F € derivable(F)
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Remarks on the algorithm

The fixed point in phase 1 may not terminate
In practice, this phase terminates on nearly all examples!

The ProVerif tool implements this algorithm with numerous extensions and
optimisations...
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Conclusions

Verification of cryptographic protocols has direct application to concrete problems
Many interesting theoretical questions: complexity, algorithms, ...

Beyond deducibility:

@ stronger notions of secrecy in terms of undistinguishability
@ other properties: authentication, anonymity, . ..

Dolev-Yao like models

@ Is the perfect cryptography assumption sound?

@ Link with more detailed models, modeling adversaries as PPT Turing
Machines
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Indistinguishability properties

Protocol executions P; and P, are observationally equivalent, i.e. cannot be
distinguisehd by any adversary

Plr\N.aPQ

Strong secrecy:
P{S(— tl} ~ P{S(— tz}

for any terms t1, to. No partial information is leaked

Anonymity: For instance in a voting system

Vl{V — O} | Vz{v — 1} ~ Vl{V — 1} | VQ{V — 0}

Few results on automation for the verification of ~
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Computational soundness of formal methods

The formal, symbolic approach (this talk):
@ data are represented as terms

9 idealized adversary and cryptography represented as deduction rules or equational
theories,

@ automated tools for analyzing large, complex protocols with multiple or unbounded
number of sessions

The computational, cryptographic approach:
9 data are represented as bitstrings
@ adversaries are PPT Turing Machines

@ cryptographic primitives are PT algorithms; the adversary has negligeable
probability to break the security

@ proofs are tedious, by hand and error-prone

Link between the two approaches ?

Goal: combine the advantages of both approaches, i.e. automatic proofs of
complex protocols with strong guarantees in a cryptographic model
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