Formal Verification of Cryptographic Protocols Tutorial

Steve Kremer

Laboratoire Spécification et Vérification ENS Cachan

Cryptographic Protocols

Protocol

Goal

 $\hookrightarrow \text{ secure communications: } \textit{secret, authentication, anonymity} \ \dots$

Applications

 \hookrightarrow mobile phones, electronic voting, homebanking, electronic commerce, \dots

Cryptographic Protocols

Protocol

Goal

 \hookrightarrow secure communications: secret, authentication, anonymity ...

Applications

 \hookrightarrow mobile phones, electronic voting, homebanking, electronic commerce, \dots

Cryptographic Protocols

Protocol

Goal

 \hookrightarrow secure communications. secret, authentication, anonymity ...

Applications

 \hookrightarrow mobile phones, electronic voting, homebanking, electronic commerce, \dots

Symmetric key and public key encryption

Symetric key encryption

Symmetric key and public key encryption

Symetric key encryption

Public key encryption

 $\begin{array}{ccccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ \bullet & B & \rightarrow & A: & \{ N_a, N_b \}_{\mathsf{pub}(A)} \\ A & \rightarrow & B: & \{ N_b \}_{\mathsf{pub}(B)} \end{array}$

$$\begin{array}{ccccc} A & \rightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \rightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \bullet & A & \rightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

$$\begin{array}{cccccc} A & \longrightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Questions

- Is N_b a shared secret between A et B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really come from A?

$$\begin{array}{cccccc} A & \longrightarrow & B: & \{A, N_a\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A: & \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B: & \{N_b\}_{\mathsf{pub}(B)} \end{array}$$

Questions

- Is N_b a shared secret between A et B?
- When B receives $\{N_b\}_{pub(B)}$, does this message really come from A?

An attack has been found on this protocol 17 years after its publication !

Agent A

Intruder 1

Agent B

 $\begin{array}{ccccc} A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}$

Agent A

Intruder *I*

Agent B


```
\begin{array}{ccccc} A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ \bullet & B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}
```


Agent A Intruder I Agent B

Agent A Intruder I Agent B

 $\begin{array}{cccc} A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \bullet & A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}$

Agent A Intruder I Agent B

```
\begin{array}{cccc} A & \longrightarrow & B & : \{N_a, A\}_{\mathsf{pub}(B)} \\ B & \longrightarrow & A & : \{N_a, N_b\}_{\mathsf{pub}(A)} \\ \bullet & A & \longrightarrow & B & : \{N_b\}_{\mathsf{pub}(B)} \end{array}
```


Agent A Intruder I Agent B

Answers

• Is N_b a shared secret between A et B? \hookrightarrow No

Agent A Intruder I Agent B

Answers

- Is N_b a shared secret between A et B? \hookrightarrow No
- When B receives $\{N_b\}_{\text{pub}(B)}$, does this message really come from A? \hookrightarrow No

Agent A Intruder I Agent B

Answers

- Is N_b a shared secret between A et B? $\hookrightarrow N_0$
- When B receives $\{N_b\}_{\text{pub}(B)}$, does this message really come from A? $\hookrightarrow \text{No}$

Remark: The encryption algorithms have not been broken

→ the flaw is in the logic of the protocol

Formal methods and cryptographic protocols

Security protocols are 3 line programs that people still manage to get wrong

Roger Needham

For more security protocols, attacks and info consult

SPORE (Security Protocols Open Repository)
http://www.lsv.ens-cachan.fr/spore/index.html

Need for rigorous methods to analyze and proof protocols correct, preferrably automated

Seminal paper by Dolev and Yao in 1981 defines an abstract model for reasoning about security protocols [DolevYao81]

Adversaries a la Dolev-Yao

- Protocol messages are modelled using abstract term algebras
 - ← perfect cryptography assumption: "A message can only be decrypted if the right decryption key is known"
- the adversary has complete control of the network
 - → all messages are sent to the intruder; hence the intruder can
 - remove message
 - alter messages
 - insert new messages which he can construct
- the intruder can initiate new sessions
 - \hookrightarrow the intruder decides who executes a protocol with whom: any number of interleaved sessions

Modelling messages using abstract term algebras

Term algebra

- a signature Σ with a finite set of function symbols $\{f_1, \ldots, f_m\}$, each given with its arity $ar(f_i)$; constants are functions with arity 0
- \bullet an infinite set of names: \mathcal{N}
- an inifinite set of variables: X
- terms are generated by the following grammar

$$\begin{array}{lll} T & ::= & \mathsf{term} \\ & \mid & x & \mathsf{variable} \ x \in \mathcal{X} \\ & \mid & a & \mathsf{name} \ a \in \mathcal{N} \\ & \mid & f(T_1, \dots, T_k) & \mathsf{application} \ \mathsf{of} \ \mathsf{function} \ \mathsf{symbol} \ f \in \Sigma \\ & & & (\mathit{ar}(f) = k) \end{array}$$

names(T) and vars(T) denote the set of names and variables of term T

A term T is said to be ground when $vars(T) = \emptyset$.

Examples of terms

Let $\Sigma = \{enc, dec, pair, fst, snd\}$ such that

- ar(enc) = ar(dec) = ar(pair) = 2
- ar(fst) = ar(snd) = 1

Examples

- $t_1 = enc(m, k)$ is a ground term $(names(t_1) = \{m, k\} \text{ and } vars(t) = \emptyset)$
- $t_2 = dec(snd(pair(x, enc(m, k))), k)$ where $names(t_2) = \{m, k\}$ and $vars(t_2) = x$

We would like to give a semantics to terms such that dec(snd(pair(x, enc(m, k))), k) and m are equivalent

Semantics of terms via equational theories

Let E be an equational theory over the symbols in Σ .

Example: Consider the following equational theory *E*

$$dec(enc(x, y), y) = x$$

$$enc(dec(x, y), y) = x$$

$$fst(pair(x, y)) = x$$

$$snd(pair(x, y)) = y$$

E partitions the set of terms generated by Σ into (an infinite number of) equivalence classes. When two terms M and N are in the same equivalence class, this is noted $M =_E N$.

Example:

We have that $dec(snd(pair(x,enc(m,k))),k) =_{\mathbf{E}} dec(enc(m,k),k) =_{\mathbf{E}} m$ (while $dec(snd(pair(x,enc(m,k))),k) \neq m$)

Free term algebras vs explicit destructors

Many works consider a free term algebra, rather than equational theories

- each term has a unique representation
- no explicit destructors

Example

Semantics are given by intruder deduction rules

$$\frac{T \vdash enc(a, k) \qquad T \vdash k}{T \vdash a}$$

The destructor symbol dec does not exist explicitly and hence a term dec(t, k) does not exist either

Here we consider explicit destructors

- some attacks are not discovered without explicit destructors [Millen03], [MeadowsLynch04]
- protocol specification is easier and more natural

- equational theories: even $=_E$ may be undecidable
- the intruder can construct an infinite number of messages: infinite branching
- the intruder can initiate an unbounded number of sessions: infinite depth

Deciding secrecy of a term is undecidable in general!

- loose termination and/or completeness
- take restrictions: particular equational theories, bounded number of sessions, passive adversaries

- equational theories: even $=_E$ may be undecidable
- the intruder can construct an infinite number of messages: infinite branching
- the intruder can initiate an unbounded number of sessions: infinite depth

Deciding secrecy of a term is undecidable in general!

- loose termination and/or completeness
- take restrictions: particular equational theories, bounded number of sessions, passive adversaries

- equational theories: even $=_E$ may be undecidable
- the intruder can construct an infinite number of messages: infinite branching
- the intruder can initiate an unbounded number of sessions: infinite depth

Deciding secrecy of a term is undecidable in general!

- loose termination and/or completeness
- take restrictions: particular equational theories, bounded number of sessions, passive adversaries

- equational theories: even $=_E$ may be undecidable
- the intruder can construct an infinite number of messages: infinite branching
- the intruder can initiate an unbounded number of sessions: infinite depth

Deciding secrecy of a term is undecidable in general!

- loose termination and/or completeness
- take restrictions: particular equational theories, bounded number of sessions, passive adversaries

Outline

- Introduction
- Passive adversary
- 3 Active adversary with finite number of sessions
- 4 Active adversary with unbounded number of sessions
- 5 Conclusion and perspectives

Outline

- Introduction
- Passive adversary
- Active adversary with finite number of sessions
- 4 Active adversary with unbounded number of sessions
- 5 Conclusion and perspectives

Deducibility: is a given term secret?

Let $\varphi = \{x_1 = T_1, \dots, x_n = T_n\}$ be a substitution where T_i are ground terms observed by the intruder and $dom(\varphi) = \{x_1, \dots, x_n\}$.

The variables x_1, \ldots, x_n are handles by the means of which the intruder accesses the corresponding terms.

Definition: deducibility

A ground term T is deducible under an equational theory E from $\varphi = \{x_1 = T_1, \dots, x_n = T_n\}$, denoted $\varphi \vdash_E T$, iff there exists a term M such that $vars(M) \subseteq dom(\varphi)$ and $names(M) \cap names(\varphi) = \emptyset$ and $M\varphi =_E T$.

Exemple:

$$\varphi = \{x_1 = enc(m, k), x_2 = k\}$$

We have that $\varphi \vdash_{\mathsf{E}} m$ as $dec(x_1, x_2)\varphi = dec(enc(m, k), k) =_{\mathsf{E}} m$.

Notations for manipulating terms

The set of positions Pos(t) of a term t is inductively defined as follows

$$\begin{array}{lll} \textit{Pos}(x) = \textit{Pos}(n) = \textit{Pos}(c) & = & \{\epsilon\} & (x \in \mathcal{X}, n \in \mathcal{N}, c/0 \in \Sigma) \\ \textit{Pos}(f(t_1, \ldots, t_n)) & = & \{\epsilon\} \cup_{1 \leq i \leq n} i \cdot \textit{Pos}(t_i) \end{array}$$

Example

Let
$$M = pair(c, enc(pair(c, k), k))$$

 $Pos(t) = \{\epsilon, 1, 2, 21, 22, 211, 212\}$

 $t|_p$ denotes the subterm of t rooted at position p, e.g. $M|_{21} = pair(c,k)$

 $t[s]_p$ denotes the term in which $t|_p$ has been replaced by s, e.g. $M[c]_{21} = pair(c, enc(c, k))$

 $st(t) = \{t|_p \mid p \in Pos(t)\}$ are the subterms of t (also extended to sets of terms)

Compact representations of sets of terms

Sets of terms can be represented in a compact way as DAGs with maximal sharing

The DAG $(\mathcal{V}, \mathcal{E})$ representing the set of terms \mathcal{T} is defined as

•
$$\mathcal{V} = st(T) \cup \{\epsilon\}$$

•
$$\mathcal{E} = \{ v_s \xrightarrow{i} v_e \mid v_s, v_e \in \mathcal{V}, v_s = f(t_1, \dots, t_n), v_e = t_i \} \cup \{ \epsilon \xrightarrow{\epsilon} v \mid v \in T \}$$

The DAG representing T graph has n+1 vertexes and at most ((n-1)*m)+n edges where n=|st(T)| and m is the maximal arity of function symbols

Example

$$T = \{ \begin{array}{c} \textit{pair}(k_1, \textit{pair}(k_2, k_3)), \\ \textit{enc}(\textit{pair}(k_2, k_3), k_3), k_1 \} \end{array}$$

 $||T||_d$ denotes the DAG-size of the set of terms T

Term rewriting systems

Given an equational theory $E=\{l_i=r_i\}$, we associate to E the TRS $\mathcal{R}_E=\{l_i\to r_i\}$

Given a TRS R

- $t \to_{\mathcal{R}} s$ if $l \to r \in \mathcal{R}$ and there exists a position p of T and a substitution σ , such that $t \mid_{p} = l\sigma$ and $s = t[r\sigma]_{p}$
- $\bullet \to_{\mathcal{R}}^*$ is the reflexive, transitive closure of $\to_{\mathcal{R}}$
- ullet R is terminating if there exists no infinite chain $t_1 o_{\mathcal R} t_2 o_{\mathcal R} \dots$
- \mathcal{R} is confluent if for all t_1, t_2, t_3 , such that $t_1 \to_{\mathcal{R}}^* t_2$, $t_1 \to_{\mathcal{R}}^* t_3$, there exists t_4 , such that $t_2 \to_{\mathcal{R}}^* t_4$ and $t_3 \to_{\mathcal{R}}^* t_4$.
- ullet is convergent if both confluent and terminating
- ullet A term t is in ${\mathcal R}$ -normal form if there is no term s such $t
 ightharpoonup _{{\mathcal R}} s$
- $t = s \downarrow_{\mathcal{R}}$ is the normal form of s if $s \to_{\mathcal{R}}^* t$ and t is in \mathcal{R} -normal form

Convergent public collapsing equational theories

Definition [Convergent public key collapsing]

[DelauneJacquemard04]

An equational theory E is convergent public key collapsing if \mathcal{R}_E is convergent and for any rule $\ell \to r \in \mathcal{R}_E$

- $ullet r \in \mathit{vars}(\ell)$ or r is ground and \mathcal{R}_{E} -normal
- if $\ell=f(\ell_1,\ldots,\ell_n)$ then for any position p in ℓ_i $(1\leq i\leq n)$, such that $\ell_i|_p=g(t_1,\ldots,t_m)$ either $g(t_1,\ldots,t_m)$ is ground and \mathcal{R}_E -normal or there exists j $(1\leq j\leq m)$, such that $t_j=r$

Examples:

- ✓ Pairing: fst(pair(x,y)) = x, snd(pair(x,y)) = y
- ✓ Symmetric encryption: dec(enc(x, y), y) = x
- ✓ Probabilistic symmetric encryption: dec(enc(x, y, r), y) = x
- XOR: $x \oplus x = 0$, $x \oplus 0 = x$, $x \oplus y = y \oplus x$, $(x \oplus y) \oplus z = x \oplus (y \oplus z)$
- \nearrow Blind signatures: unblind(sig(blind(x, r), y), r) = sig(x, y)

Locality lemma

Locality lemma

following McAllester93

Let E be a convergent public collapsing theory, $\varphi = \{x_1 = M_1, \dots, x_n = M_n\}$ and $\varphi \vdash_E T$. Every minimal size proof M is such that for any $t \in st(M\varphi)$, we have that $t \downarrow_{\mathcal{R}_E} \in st(\{M_1, \dots, M_n\} \cup \{T\} \cup \{c \mid c \in \Sigma, ar(c) = 0\})$.

Proof: The proof is done by induction on M. The difficult case is when a destructor is applied: done by a case analysis on the conditions on the TRS.

Example

Let $\varphi = \{x_1 = enc(a, k_1), x_2 = pair(k_1, k_2)\}$. We have that $\varphi \vdash_E a$, because of the (minimal size) proof $M = dec(x_1, fst(x_2))$. The proof indeed only includes subterms of φ and T. We have that $M\varphi = dec(enc(a, k_1), fst(pair(k_1, k_2)))$ and

$$st(M\varphi) = \{ dec(enc(a, k_1), fst(pair(k_1, k_2))) |_{\mathcal{R}_{\mathcal{E}}} = a, enc(a, k_1), a, k_1, \\ fst(pair(k_1, k_2)) |_{\mathcal{R}_{\mathcal{E}}} = k_1, pair(k_1, k_2), k_2 \}$$

Deciding deducibility

Theorem

$[{\sf Delaune Jacquemard}04]$

Let $\varphi = \{x_1 = M_1, \dots x_n = M_n\}$. Let t be a ground term. When E is convergent public collapsing $\varphi \vdash_E t$ can be decided in polynomial time in $||\{M_1, \dots, M_n, t\}||_d$.

Proof: Due to the locality Lemma the proof contains only subterms of φ and t or constants. Define the set of Horn clauses

$$S = \left\{ \begin{array}{ccc} \Rightarrow p(s) & | s \in \{M_1 \downarrow_{\mathcal{R}_E}, \dots, M_n \downarrow_{\mathcal{R}_E}\} \\ & \text{or } s/0 \in \Sigma \\ p(s_1), \dots, p(s_n) & \Rightarrow p(f(s_1, \dots, s_n) \downarrow_{\mathcal{R}_E}) & | s_1, \dots, s_n, f(s_1, \dots, s_n) \downarrow_{\mathcal{R}_E} \\ & \in st(\{M_1, \dots, M_n, y\}), f \in \Sigma \end{array} \right\}$$

We have that $\varphi \vdash_E t$ iff S is not satisfiable. HORN-SAT can be dedided in linear time in |S| and |S| is polynomial in $||\{M_1,\ldots,M_n,t\}||_d$ (the degree is the maximum arity of Σ).

Many other results for different families of equational theories:

 $[{\sf Comon-LundhTreinen03}], \ [{\sf AbadiCortier04}], \ [{\sf LafourcadeLugiezTreinen04}], \ \dots$

Outline

- Introduction
- Passive adversary
- Active adversary with finite number of sessions
- 4 Active adversary with unbounded number of sessions
- 5 Conclusion and perspectives

Representing protocols as roles

Represent the local view of the protocol

$$\begin{array}{l} \textit{Role A} \\ \\ \textit{protocol step 1} \end{array} \left\{ \begin{array}{l} \textit{receive}(x_1) \\ \{M_1^1 = N_1^1, \ldots, M_{\ell_1}^1 = N_{\ell_1}^1\} \\ \textit{send}(t_1) \end{array} \right. \\ \\ \vdots \\ \\ \textit{protocol step n} \end{array} \left\{ \begin{array}{l} \textit{receive}(x_n) \\ \{M_1^n = N_1^n, \ldots, M_{\ell_n}^n = N_{\ell_n}^n\} \\ \textit{send}(t_n) \end{array} \right.$$

We suppose that $vars(M_j^i, N_j^i, t_i) \subseteq \{x_k \mid k \leq i\}.$

A scenario is a finite set of roles

Example: the Needham Schroeder protocol

```
A \rightarrow B: enc(pair(N<sub>A</sub>, pk(A)), pk(B))
                         B \rightarrow A: enc(pair(N<sub>A</sub>, N<sub>B</sub>), pk(A))
                         A \rightarrow B : enc(N_B, pk(B))
              Role1(N_A, A, pkB)
                                                                  Role2(N_B, B)
                                                  recv(x_1^2)
                                                  send(enc(pair(fst(dec(x_1^2, sk(B))), N<sub>B</sub>),
      send(enc(pair(N_A, pk(A)), pkB))
                                                             snd(dec(x_1^2, sk(B))))
      recv(x_1^1)
                                                  recv(x_2^2)
                                                  \{fst(dec(x_2^2, sk(B))) = N_B\}
      \{fst(dec(x_1^1, sk(A))) = N_A\}
      send(enc(snd(dec(x_1^1, sk(A)))))
                                                  send(enc(snd(dec(x_2^2, skA))))
Scenario: \{Role1(na1, a, pk(b)), Role1(na2, a, pk(i)), Role2(nb, b)\}
```

Concrete semantics

A configuration is of the form r_1, \ldots, r_n, ϕ

Concrete execution step

$$r_1,\ldots,r_i,\ldots,r_n,\phi\to r_1,\ldots,r_i',\ldots,r_n,\phi'$$

- $r_i = recv(x), \{M_j = N_j\}, send(t).\tilde{r}_i$
- $\phi \vdash_E m$, such that $M_j\{x=m\} =_E N_j\{x=m\}$
- $\bullet \ r_i' = \tilde{r}_i \{ x = m \}$

Given a scenario $\{r_1, \ldots, r_n\}$ the initial state corresponds to r_1, \ldots, r_n, ϕ_0 , where ϕ_0 represents the initial knowledge of the intruder, e.g. public keys, identities, ...

Insecurity of the protocol w.r.t. a secret s: a configuration r_1, \ldots, r_n, ϕ is reachable, such that $\phi \vdash_F s$

Infinite state system

The concrete semantics yields an infinite state system

The resulting transition system

- infinite branching: the intruder may deduce an infinite number of terms
- exponential number of interleavings
- each path is finite (fixed number of roles, each finite)

Symbolic semantics and lazy intruders

Main idea: keep variables and constraints instead of ground messages

An intruder constraint is either $\phi \Vdash x$ or an equation M = N

A symbolic configuration: $r_1, \ldots, r_n, \mathcal{C}, \phi$

Symbolic execution step: $r_1, \ldots, r_i, \ldots, r_n, \mathcal{C}, \phi \to r_1, \ldots, r_i', \ldots, r_n, \mathcal{C}', \phi'$

- $r_i = recv(x), \{M_i = N_i\}, send(t).r'_i$
- $\bullet \ \mathcal{C}' = \mathcal{C} \cup \{\phi \Vdash x\} \cup \{M_j = N_j\}$
- $\bullet \ \phi' = \phi \circ \{y = t\}$

The symbolic transition system has only one branch per interleaving

The intruder instantiates variables lazily

Intruder constraint systems

Any interleaving of roles leads to an intruder constraint sytem is of the form

$$\begin{array}{ccccc} \phi_{0} & \Vdash & x_{1} \\ \phi_{1} = \phi_{0} \circ \{y_{1} = t_{1}\} & \Vdash & x_{2} \\ \phi_{2} = \phi_{1} \circ \{y_{2} = t_{2}\} & \Vdash & x_{3} \\ & & & \vdots \\ \phi_{n} = \phi_{n-1} \circ \{y_{n} = t_{n}\} & \Vdash & x_{n} \\ \{M = N\} \end{array}$$

A solution of C is a grounding substitution σ , such that $\phi_j \vdash_E x_j \ (1 \le j \le n)$ and $M\sigma =_E N\sigma$.

 σ is a solution iff it yields a valid concrete execution

To decide the secrecy of a term s, add an additional constraint

$$\phi_{n+1} = \phi_n \circ \{y_{n+1} = t_{n+1}\} \Vdash s$$

Deciding insecurity

Theorem

Deciding insecurity with respect to a secret s in presence of a convergent public collapsing theory is NP-complete.

NP-easy

- guess an interleaving of the roles
- construct the corresponding constraint system
- solving the constraint sytem is in NP [DelauneJacquemard04]

NP-hard

Let X_1,\ldots,X_n be propositional variables and consider the following instance of 3-SAT: $\wedge_{1\leq i\leq m}(X_{\alpha_{i,1}}^{\epsilon_{i,1}}\vee X_{\alpha_{i,2}}^{\epsilon_{i,2}}\vee X_{\alpha_{i,3}}^{\epsilon_{i,3}})$ where $\epsilon_{i,j}\in\{0,1\}$ and $X^1=X$ and $X^0=\neg X$.

Consider $\Sigma = \{\top/0, \bot/0, tup/n, \pi_1/1, \ldots, \pi_n/1, \neg/1, \land/2, \lor/2\}$ and the expected convergent public collapsing equational theory

$$\mathit{recv}(x), \{ \land_{1 \leq i \leq m} (\pi_{\alpha_{i,1}}(x)^{\epsilon_{i,1}} \lor \pi_{\alpha_{i,2}}(x)^{\epsilon_{i,2}} \lor \pi_{\alpha_{i,3}}(x)^{\epsilon_{i,3}}) = \top \}, \mathit{send}(\mathit{secret})$$

Initially:
$$\mathcal{D} = \emptyset$$
 and $\mathcal{S} = \emptyset$

(C; D; S)

Initially:
$$\mathcal{D} = \emptyset$$
 and $\mathcal{S} = \emptyset$

Syntactic Unification

$$\frac{\mathcal{C} \cup \{e[u]\}; \mathcal{D}; \mathcal{S}}{\mathcal{C} \cup \{e[r]\}; \mathcal{D}\eta; \mathcal{S}\eta \cup \eta}$$

$$\frac{\mathcal{C} \cup \{t_1 = t_2\}; \mathcal{D}; \mathcal{S}}{\mathcal{C}; \mathcal{D}\eta; \mathcal{S}\eta \cup \eta}$$

Narrowing

e is an equation or an intruder constraint, $\ell \to r$ is a fresh variant of a rule of \mathcal{R}_F , $\eta = mgu(\ell S, uS)$ $root(\ell) = root(u)$.

Syntactic Unification

$$\eta = mgu(t_1\mathcal{S}, t_2\mathcal{S})$$

Initially:
$$\mathcal{D} = \emptyset$$
 and $\mathcal{S} = \emptyset$

Narrowing Syntactic Unification

$$\frac{\mathcal{C} \cup \{c\}; \mathcal{D}; \mathcal{S}}{\mathcal{C}; \mathcal{D} \cup \{c\mathcal{S}\}; \mathcal{S}}$$

Blocking c is an intruder constraint.

Initially:
$$\mathcal{D} = \emptyset$$
 and $\mathcal{S} = \emptyset$

$$\frac{\mathcal{C}; \mathcal{D}; \mathcal{S}}{\mathcal{C}; \mathcal{D}[x=t]; \mathcal{S}[x=t] \cup [x=t]}$$

$$\frac{\mathcal{C}; \mathcal{D} \cup \{T \Vdash u\}; \mathcal{S}}{\mathcal{C}; \mathcal{D}; \mathcal{S}}$$

Variable Elimination $x \in vars(\mathcal{D}), t \in st(\mathcal{D}) \setminus vars(\mathcal{D}),$ there is no occurence of x in t.

Ground if $T \vdash_{E} u$.

Initially:
$$\mathcal{D} = \emptyset$$
 and $\mathcal{S} = \emptyset$

$$\frac{\mathcal{C}; \mathcal{D}; \mathcal{S}}{\mathcal{C}; \mathcal{D}[x=t]; \mathcal{S}[x=t] \cup [x=t]}$$

$$\frac{\mathcal{C}; \mathcal{D} \cup \{T \Vdash u\}; \mathcal{S}}{\mathcal{C}; \mathcal{D}; \mathcal{S}}$$

Variable Elimination $x \in vars(\mathcal{D}), t \in st(\mathcal{D}) \setminus vars(\mathcal{D}),$ there is no occurence of x in t.

Ground if $T \vdash_{E} u$.

Finally: $C = \emptyset$ and $D = \emptyset$ if a solution exists

Tools based on constraint solving

Several tools exploit similar ideas based on constraint solving

- Constraint solver by Millen and Shmatikov
 - http://www.csl.sri.com/users/millen/capsl/constraints.html
- CoProVe Constraint-based Security Protocol Verifier: optimised and extended version by Corin and Etalle
 - http://wwwes.cs.utwente.nl/coprove/
- AVISPA tool suite Automated Validation of Internet Security Protocols and Applications: several tools are based on constraint solving
 - http://www.avispa-project.org/

Outline

- Introduction
- Passive adversary
- Active adversary with finite number of sessions
- 4 Active adversary with unbounded number of sessions
- 5 Conclusion and perspectives

Horn clauses

A Horn clause is a logical formula of the form

$$\frac{L_1,\ldots,L_n}{L} \quad (\equiv \neg L_1 \vee \ldots \vee \neg L_n \vee L)$$

First order Horn clauses provide a simple and uniform formalism to

- model abilities of the attacker
- model the rules of the protocol
- verify an unbounded number of sessions: the intruder can create new sessions

Horn clauses are for instance used as a low level representation (translation from a high-level language to Horn clauses) in the ProVerif tool [Blanchet2001]

http://www.di.ens.fr/~blanchet/crypto.html

Syntax

Intruder capacities as Horn clauses

To model the capacities of the intruder

- introduction of a special predicate I(m) to model intruder knowledge
- I(m) is true iff the intruder knows message m

Let $f \in \Sigma$ be a function symbol with ar(f) = n. f is modeled by the rule

$$\frac{I(x_1),\ldots,I(x_n)}{I(f(x_1,\ldots,x_n))}$$

Suppose that we are given the equational theory E and the associated rewriting system \mathcal{R}_E . E est modeled by the rules

$$\frac{I(\ell)}{I(r)}$$

where $\ell \to r \in \mathcal{R}_F$

Initial knowledge: if a ground term t is initially known we add the rule I(t)

Example: Intruder capacities

Consider the signature

$$\Sigma = \{enc/2, dec/2, pair/2, fst/1, snd/1\}$$

and the (convergent) equational theory

$$E = \{ dec(enc(x, y), y) = x, fst(pair(x, y)) = x, snd(pair(x, y)) = y \}$$

We obtain the following rules

$$\frac{I(x) \quad I(y)}{I(enc(x,y))} \quad \frac{I(x) \quad I(y)}{I(dec(x,y))} \quad \frac{I(x) \quad I(y)}{I(pair(x,y))} \quad \frac{I(x)}{I(fst(x))} \quad \frac{I(x)}{I(snd(x))}$$

$$\frac{I(dec(enc(x,y),y)}{I(x)} \quad \frac{I(fst(pair(x,y))}{I(x)} \quad \frac{I(snd(pair(x,y)))}{I(y)}$$

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

Initiating a new session

The intruder chooses with whom A starts the protocol

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

Modelling fresh values

Fresh values are functions of the "parameters" of the protocol

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

$$A \longrightarrow B : \{N_a, A\}_{pub(B)}$$

$$B \longrightarrow A : \{N_a, N_b\}_{pub(A)}$$

$$A \longrightarrow B : \{N_b\}_{pub(B)}$$

$$\frac{I(pk(x))}{I(enc((Na[pk(x)], pk(sA[])), pk(x)))}$$

$$\frac{I(encrypt((x, y), pk(sB[])))}{I(encrypt((x, Nb[x, y]), y))}$$

$$\frac{I(pk(x)), I(encrypt((Na[pk(x)], y), pk(sA[])))}{I(encrypt(y, pk(x)))}$$

Example: the Needham Schroeder protocol modeled in terms of Horn clauses

$$A \longrightarrow B : \{N_a, A\}_{pub(B)}$$

$$B \longrightarrow A : \{N_a, N_b\}_{pub(A)}$$

$$A \longrightarrow B : \{N_b\}_{pub(B)}$$

$$\frac{I(pk(x))}{I(enc((Na[pk(x)], pk(sA[])), pk(x)))}$$

$$\frac{I(encrypt((x, y), pk(sB[])))}{I(encrypt((x, Nb[x, y]), y))}$$

$$\frac{I(pk(x)), I(encrypt((Na[pk(x)], y), pk(sA[])))}{I(encrypt(y, pk(x)))}$$

Approximations

Modeling security protocols by Horn clauses introduces approximations

- fresh values are modelled as names, which are functions of previously received values
 - if the intruder sends the same previous value, the same "fresh" name will be used
- there is no order on the rules

for instance a protocol step can be executed several times

These approximations can lead to false attacks

In practice, false attacks are very seldom

The approximations are correct

If a correction proof is given in the model of Horn clauses, the protocol is also correct in a precise model

Derivability

Definition [Implication between rules]

 $(H_1 \to C_1) \Rightarrow (H_2 \to C_2)$ iff there exists a substitution σ such that $C_1 \sigma = C_2$ and $H_1 \sigma \subseteq H_2$ (H_1 and H_2 are sets of hyotheses)

Definition [Derivability]

Let F be a ground fact and B a set of rules. F is derivable from B iff there exists a finite tree such that

- 1. all nodes (except the root) are labelled by a rule $R \in B$
- 2. edges are labelled by facts
- 3. if a tree contains a node labelled by a rule R with an incoming edge, labelled F_0 and n outgoing edges labelled F_1, \ldots, F_n then $R \Rightarrow \{F_1, \ldots, F_n\} \rightarrow F_0$
- 4. The root has an outgoing edge labelled by F

Secrecy

A ground term S is secret if it is not possible to derive the fact I(S) from the rules describing the intruder capacities and the protocol rules

Example

Suppose that we are given the following rules

$$I(x) \wedge I(y) \rightarrow I((x,y))$$
 (1) $I(m[])$ (4) $I(x) \wedge I(y) \rightarrow I(\text{encrypt}(x,y))$ (2) $I(n[])$ (5) $I(pk(sA[]))$ (3)

We can derive I(encrypt((m[], n[]), pk(sA[]))) as follows:

40 / 49

Automatisation?

Given a set of rules (Horn clauses), can a fact F be derived from these rules

This problem corresponds to the problem solved by Prolog

But: the classic Prolog resolution algorithm does not terminate given classical rules used in cryptographic protocols

In [Blanchet2001], Blanchet presents a novel resolution algorithm which "guides" the resolution and is well suited fro cryptographic protocols

Preliminary definitions...

Definition [rule combination]

Let $R=H\to C$ and $R'=H'\to C'$ be two rules. We suppose that there exists a fact $F_0\in H'$, such that F_0 and C can be unified, and σ is the most general unifier for C and F_0 . Then

$$R \circ_{F_0} R' = (H \cup (H' \setminus F_0))\sigma \to C'\sigma$$

Example:

$$R = I(pk(x)) \rightarrow I(encrypt(sign(msg[], skA[]), pk(x)))$$

 $R' = I(encrypt(m, pk(sk))) \land I(sk) \rightarrow I(m)$
Let $F_0 = I(encrypt(m, pk(sk)))$. Then

$$R \circ_{F_0} R' = I(pk(x)) \wedge I(x) \rightarrow I(sign(msg[], skA[]))$$

where $\sigma = \{ sk = x, m = sign(msg[], skA[]) \}$

Guiding the algorithm

Let S be a finite set of facts. We say that $F \in_r S$ iff there exists a substitution σ of variables by other variables such that $F\sigma \in S$.

In the algorithm S will guide the choices for combining rules: one does not combine R and R' by $R \circ_{F_0} R'$ if $F_0 \in_r S$

Example: By default $S = \{I(x)\}$ to avoid the following situation. Suppose $I(x) \notin_r S$ and consider the rules

$$I(x) \rightarrow I(pk(x))$$
 (1)
 $I(pk(x)) \land I(y) \rightarrow \text{encrypt}(y, pk(x))$ (2)

If we apply the combination $(2) \circ_{I(x)} (1)$ we obtain

$$I(pk(x)) \land I(y) \rightarrow pk(encrypt(y, pk(x)))$$
 (3)

We can then apply the combination (3) $\circ_{I(x)}$ (1) and obtain

$$I(pk(x)) \land I(y) \rightarrow pk(pk(encrypt(y, pk(x))))$$
 (4)

The successive combinations do not terminate. Similar problem if $F_0 = I(y)$.

Resolution algorithm: phase 1

Let
$$add(R, B) = \begin{cases} B & \text{if } \exists R' \in B, R' \Rightarrow R \\ \{R\} \cup \{R' \in B \mid R \not\Rightarrow R'\} & \text{else} \end{cases}$$

Let B_0 be the set of rules describing the protocol and the intruder

- 1. For all $R \in B_0$, B = add(R, B)
- 2. Let $R \in \mathcal{B}$, $R = H \to C$ and $R' \in \mathcal{B}$, $R' = H' \to C'$. Suppose there exists $F_0 \in H'$ such that
 - (a) $R \circ_{F_0} R'$ is defined
 - (b) $\forall F \in H, F \in_r S$ # by default $S = \{I(x)\}$
 - (c) $F_0 \not\in_r S$

Then $B = add(R \circ_{F_0} R', B)$

Execute step 2. until reaching a fixed point

3. $B' = \{(H \rightarrow C) \in B \mid \forall F \in H, F \in_r S\}$

After executing phase 1, we have that a ground fact F can be derived from B' iff F can be derived from B_0

Resolution algorithm: phase 2

derivablerec(R, B'')

- 1. derivablerec $(R, B'') = \emptyset$ if $\exists R' \in B''.R' \Rightarrow R$ # loop: backtrack
- 2. else, derivablerec($\emptyset \to C, B''$) = { C} # proof of C
- 3. else, derivablerec $(R, B'') = \bigcup \{derivablerec(R' \circ_{F_o} R), \{R\} \cup B'' \mid R' \in B', F_o \text{ is such that } R' \circ_{F_o} R \text{ is defined} \}$

```
\mathsf{derivable}(F) = \mathsf{derivablerec}(\{F\} \to F, \emptyset\})
```

Intuitively,

- ullet the hypotheses of R contain the facts that we are currently trying to prove
- ullet the conclusion of R is an instance of F that we initially wanted to prove
- ullet the set B'' contains the rule already encountered during the search

F is derivable from B_0 iff $F \in derivable(F)$

Remarks on the algorithm

The fixed point in phase 1 may not terminate

In practice, this phase terminates on nearly all examples!

The ProVerif tool implements this algorithm with numerous extensions and optimisations...

Conclusions

Verification of cryptographic protocols has direct application to concrete problems

Many interesting theoretical questions: complexity, algorithms, ...

Beyond deducibility:

- stronger notions of secrecy in terms of undistinguishability
- other properties: authentication, anonymity, ...

Dolev-Yao like models

- Is the perfect cryptography assumption sound?
- Link with more detailed models, modeling adversaries as PPT Turing Machines

Indistinguishability properties

Protocol executions P_1 and P_2 are observationally equivalent, i.e. cannot be distinguisehd by any adversary

$$P_1 \approx P_2$$

Strong secrecy:

$$P\{s \leftarrow t_1\} \approx P\{s \leftarrow t_2\}$$

for any terms t_1, t_2 . No partial information is leaked

Anonymity: For instance in a voting system

$$V_1\{v \leftarrow 0\} \mid V_2\{v \leftarrow 1\} \approx V_1\{v \leftarrow 1\} \mid V_2\{v \leftarrow 0\}$$

Few results on automation for the verification of \approx

Computational soundness of formal methods

The formal, symbolic approach (this talk):

- data are represented as terms
- idealized adversary and cryptography represented as deduction rules or equational theories.
- automated tools for analyzing large, complex protocols with multiple or unbounded number of sessions

The computational, cryptographic approach:

- data are represented as bitstrings
- adversaries are PPT Turing Machines
- cryptographic primitives are PT algorithms; the adversary has negligeable probability to break the security
- proofs are tedious, by hand and error-prone

Link between the two approaches?

Goal: combine the advantages of both approaches, i.e. automatic proofs of complex protocols with strong guarantees in a cryptographic model