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a Definition of a (finite) discrete event system P

2 Definition of a finite or infinite object Beh(P) representing the “behaviour” of P

2 Definition of a logic £ whose formulas F express properties of Beh(P)
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a Definition of a (finite) discrete event system P

2 Definition of a finite or infinite object Beh(P) representing the “behaviour” of P

2 Definition of a logic £ whose formulas F express properties of Beh(P)

Several possibilities for each definition
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Depending on the choice of Beh and L

2 Model-checking Given P and Fin L,
does Beh(P) has property F? (complexity)

2 Satisfiability Given F,
does there exist P such Beh(P) has property F? (decidability, complexity)

2 Synthesis Given F,
find a P such Beh(P) has property F (if any) (complexity)
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HOW

l. Logics for linear behaviour

Il. Logics for branching behaviour
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Let A be a set of events, and A be a set of labels

A transition system (or discrete event systems) is a tuple P = (S,s,, T, A\)
where

a S is a finite set of states
4 s, € S is the initial state
2T CS x A xSisthe set of transitions

a A:S — Ais alabelling mapping
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Let A be a set of events, and A be a set of labels

A transition system (or discrete event systems) is a tuple P = (S,s,, T, A\)
where

a S is a finite set of states
4 s, € S is the initial state
2T CS x A xSisthe set of transitions

a A:S — Ais alabelling mapping

Remark Usually, A = P(Prop) for some set Prop of local properties (possibly
empty!), but nothing forbids A =S and A = ids.
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Part |
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A path of P = (S, s,, T,A) is an infinite sequence spaps1a -« SnanSn+10n4+1 -
(with s; € S and a; € A) such that

4 S0 = Sy,
aVneN, (sn,an,snt1) €T
The trace of the path spapsiar ---snansn+1an+1 -+ - is the sequence
4 apdq---andn41 - € A% (event trace)
3 A(so)A(s1) - A(sn)A(Snt1) - € A® (label trace)

3 (A(so),a0)(Als1),ar) - (Alsn),an)(Alsnt1), ang1)--- € (A X A)?® (full
trace)
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A path of P = (S, s,, T,A) is an infinite sequence spaps1a -« SnanSn+10n4+1 -
(with s; € S and a; € A) such that

4 S0 = Sy,
aVneN, (sn,an,snt1) €T
The trace of the path spapsiar ---snansn+1an+1 -+ - is the sequence
4 apdq---andn41 - € A% (event trace)
3 A(so)A(s1) - A(sn)A(Snt1) - € A® (label trace)

3 (A(so),a0)(Als1),ar) - (Alsn),an)(Alsnt1), ang1)--- € (A X A)?® (full
trace)

Given a type of trace, Beh(P) is the set of traces of all paths in P
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Without loss of generality, we may consider only event traces of state-unlabelled
transition systems.

P={(S,s.,,TA\)overAand A — P’ ={(S;s,,T’,A") over B and P(0)

where

2 label trace

JB=A

2T ={(s,A(s),s") | Jac A:(s,a,s') €T}
a full trace

1 B=AXA

2T ={(s,(A(s),a),s’) | (s,a,s") € T}
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Specifications

Beh(P) is a subset of BY where B = A, A, A x A according to the type of trace.
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Beh(P) is a subset of B® where B = A, A, A x A according to the type of trace.

A specification Spec is a subset of B®”

Beh(P) satisfies Spec iff Beh(P) C Spec
iff Beh(P)N (B® — Spec) = 0.
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Specifications

Beh(P) is a subset of BY where B = A, A, A x A according to the type of trace.

A specification Spec is a subset of B®

Beh(P) satisfies Spec iff Beh(P) C Spec
iff Beh(P)N (B“ — Spec) = 0.

= Definition of subsets of B¥
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A Blchi automaton A over A is a pair ((Q, q.,A), Qr) where (Q, q«,A) is an
unlabelled transition system and Qr is a subset of Q.

An infinite word u = apa; - - - is recognized by A if it is the trace of an accepting
path m = gq.apoqgiaiqz - - -, i.e., which contains infinitely many q; in Qr.

L(A) C A® is the set of all words recognized by A.
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A set L C A® is recognizable if thereisa A suchthat L = L(A).

Closure properties

s If L and L' are recognizable subsets of A thenLUL  and LNL" are
recognizable.

2 If L is recognizable then B® — L is recognizable.

4 Lett: A — B. LetT[(L) :{7'[((10)7'[(0_1)--- | aopai --- € L}g BY. IfLis
recognizable then 7t(L) is recognizable.
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11

A set L C A® is recognizable if thereisa A suchthat L = L(A).

Closure properties

s If L and L' are recognizable subsets of A thenLUL  and LNL" are
recognizable.

2 If L is recognizable then B® — L is recognizable.
aletm: A — B. Letn(L) ={mt(ap)m(ar)---|apa;---€ L} CB*. IfLis
recognizable then 7t(L) is recognizable.

Proof

If L = L(A)[and L’ = L(A’)] one can construct A" such that L(.A”) is equal to

what is needed.
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Proposition
L(A) is not empty iff A contains a state q; reachable fromq, and a cycle
qiaiqz ---qdnand1 Which contains a state q; € Qr.

Decidable in linear time (Tarjan’s algorithm for strongly connected components)
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12

Proposition
L(A) is not empty iff A contains a state q; reachable fromq, and a cycle
qiaiqz ---qdnand1 Which contains a state q; € Qr.

Decidable in linear time (Tarjan’s algorithm for strongly connected components)

Beh(P) N L(.A) is recognized by the automaton B = ((S x Q, (s«,q«),I),S x QF)
where

((s,a),a,(s’,q")) €T iff (s,a,s') € Tand (q,a,q") € A.
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Deterministic automata

For any state q, A(q) contains at most one state.
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13

Deterministic automata

For any state q, A(q) contains at most one state.

Not every recognizable language is recognized by a deterministic Btichi
automaton
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For any state q, A(q) contains at most one state.

Not every recognizable language is recognized by a deterministic Btichi
automaton

counter example

Let L ={a, b} a®”. Let us assume that A is a deterministic Btichi automaton with
n states which recognizes L.

For any (reachable) state ¢ there exist a state q’ and a state q”’ € Qr such that

q al q’ °, q” °, q’withm+1i+j=n.
It follows that the unique path for (a™b)w is accepting.
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Let P = (Q, q«,A) be a transition system and let T = q.aoqi1ai1q2 --- be a path.
Let Inf(7t) be the set of all states ocuring infinitely often in 7.

Blchi automaton (P, F) where F C Q. 7t is accepting if Inf(7t) N F not empty

Muller automaton (P, ) where F C P(Q). 7t is accepting if Inf(m) € F.

Parity automaton(P, p) where p: Q — N. 7t is accepting if max{p(q) | g € Inf(m)}is
even.
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14

Let P = (Q, q«,A) be a transition system and let T = q.aoqi1ai1q2 --- be a path.
Let Inf(7t) be the set of all states ocuring infinitely often in 7.

Blchi automaton (P, F) where F C Q. 7t is accepting if Inf(7t) N F not empty

Muller automaton (P, ) where F C P(Q). 7t is accepting if Inf(m) € F.

Parity automaton(P, p) where p: Q — N. 7t is accepting if max{p(q) | g € Inf(m)}is
even.

2 ifqecF
Blichi to parity: p(q) = | ,
1 otherwise
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Determinisation of automata

Theorem[McNaughton, 1966] and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a
deterministic parity automaton.
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Theorem[McNaughton, 1966] and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a
deterministic parity automaton.

Example
Let A ={ap,ar,az}andletL = A ay U (A% a,)®.

Q =1{do,q1,492}, d« = qo, p(qi) = i.
\v/i')j>A(qi)aj) :{ql}
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Let A= ((Q, q«,A), Qr) be a Blichi automaton and let u € A seen as a mapping
u:N— A (e, u=u0)u(l)---umnj---).
u is recognized by A iff with each q € Q is associated a subset E, of N such that

2 these subsets form a partition of N, more precisely
4 they are pairwise disjoint: Vq,q' € Q,q #q ' = EqNE, =0
a they cover N: N C {J, <o Eq

a0€ektqy,

s for any n € N there exists (q,a,q’) € A such thatn € E,, u(n) = a, and
n+1E€ Eq/

a there exists q € Qr such that E is infinite (i.,e., Yn e N,dm € E4 : n < m)
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Let A= ((Q, q«,A), Qr) be a Blichi automaton and let u € A seen as a mapping
u:N— A (e, u=u0)u(l)---umnj---).
u is recognized by A iff with each q € Q is associated a subset E, of N such that

2 these subsets form a partition of N, more precisely
4 they are pairwise disjoint: Vq,q' € Q,q #q ' = EqNE, =0
a they cover N: N C {J, <o Eq

a0€ektqy,

s for any n € N there exists (q,a,q’) € A such thatn € E,, u(n) = a, and
n+1E€ Eq/

a there exists q € Qr such that E is infinite (i.,e., Yn e N,dm € E4 : n < m)
Trivian+1ecbEiffdmeE:n <mandVk € N(k <norm < k)

OctEiff imeE:Vke Nm <k
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Let Varo be a set of individual variables and Var; be a set of set variables. For
each a € A let V. be a unary predicate.
The formulas are defined inductively by

4 Vq(x) with x € Varp and a € A

ax <vy,x € Xwithx,y € Varp and X € Vary,

a2 FVF,FAF,—F, with F and F’ are formulas.

2 dxF, VxF, 3XF, VXF, with x € Vary, X € Vary, and F a formula.
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Let Varo be a set of individual variables and Var; be a set of set variables. For
each a € A let V. be a unary predicate.
The formulas are defined inductively by

4 Vq(x) with x € Varp and a € A

ax <vy,x € Xwithx,y € Varp and X € Vary,

a2 FVF,FAF,—F, with F and F’ are formulas.

2 dxF, VxF, 3XF, VXF, with x € Vary, X € Vary, and F a formula.

Let F(x,x’,..., X, X’,...) be aformula whose free variables are
x,x’,...(individual) and X, X', ... (set). Let u be a word.

Letn,n’,... (resp., E,E’ ...) be natural numbers (resp. sets) associated with the
free individual (resp. set) variables of F.

We define (by induction) the satisfaction relation u = F(n,n’,... ,E, E’,...) which
means that F(n,n’,... , E,E’...) is true in u by

supEVen)iffun) =a

FIEREREE straightforward!
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Asetl C A® is MSOL-definable if there is a closed formula F such that
L={u|upgEF

Theorem[Blichi, 1960]
A set L is recognizable iff it is MSOL definable.

Proof
= see above
& by induction, using the closure properties given above

18
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Every FOL-definable language is MSOL-definable.
The converse is not true! Example {u € {a,b}®* | u(n) = a = nis even}.

Theorem[Kamp, 1968]

A language is FOL-definable iff it is LTL-definable
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F 1= truelfalsela|—alb[—b]- -]
FV FFAF[-F
NFAFFUF

Definition of u = F.
Let uli] be the suffix u(i)u(i+ 1)--- of u.

Ju = true, u t£ false

sguEaiffu(0) = a.

sukEFVF (resp. A)iffu = For (resp. and) u = F’

s ukENFiffulll] & F,

3 u = AFiff VA, uli] = F,

a u = FUF' iff there exists 1 such that
sulilEFandVj,0<j<i=ulj]=F
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Duality

Extension of De Morgan’s law
g ~NF=N-F
a = AF = trueld—F
a—~(FUF)=(A-F) V (—FHYU(-FA-F)
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AN

By induction on F in LTL : there exists F(x) in FOL such that

Vi, (uli] EF & u k= Fi)

MOVEP 2006 Bordeaux, june 2006



23

With a formula F we associate the defined language [F] = {u | u &= F}.

[Fl N AL.
3 [FUF'] is the least language L such that L = [F'] U ([F] N AL).

2 [AF] is the greatest language L such that L
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With a formula F we associate the defined language [F] = {u | u &= F}.

a [AF] is the greatest language L such that L = [F] N AL.
a [FUF'] is the least language L such that L = [F’] U ([F] N AL).

Notation

a [AF] =~vL.([F] " AL).
a3 [FUF') = uL.([F'] U ([F] nAL)).
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Alternating automata

[aldb] = a*b{a, b}® is recognized by

Chi)m, ChE)CJz, QZgCJZ, Qquz,

[A(aldb)] = (a*b)® is recognized by adding

OIo&> OIo/\Oh, do 5qo/\q1, with initial state qo/\q1.
a D—22+@Da,b
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[aldb] = a*b{a, b}® is recognized by

Chgfh, q15qz, OIZ$OI2, OI23CJI2,

[A(aUb)] = (a™b)® is recognized by adding
do > qoAdi, do>doAqi,  withinitial state qo A qs.

How to get a nondeterministic automaton (possibly deterministic)
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24

[aldb] = a*b{a, b}® is recognized by

Chgfh, q15qz, OIZ$OI2, OI23CJI2,

[A(aUb)] = (a™b)® is recognized by adding
do > qoAdi, do>doAqi,  withinitial state qo A qs.

The usual powerset construction does not work!

[qo, a1} S {qo, a1}, {do, a1} {qo, d1, g2},
{qo,q1,42) > {qo,d1,42), {do,q1, 492} > {do,q1, g2},

« D—22>@GD a,b
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[aldb] = a*b{a, b}® is recognized by

Chgfh, q15qz, OIZ$OI2, OI23CJI2,

[A(aUb)] = (a™b)® is recognized by adding
do > qoAdi, do>doAqi,  withinitial state qo A qs.

The usual powerset construction does not work!

[qo, a1} S {qo, a1}, {do, a1} {qo, d1, g2},
{qo,q1,42) > {qo,d1,42), {do,q1, 492} > {do,q1, g2},

o MD—22+@Da,b

If b is recognized then ba® is recognized as well
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Let R be the set of binary relations over {qo, q1, q2}. Example: R = ?ﬁ gf
do do

Let us define the language L on A x R recognized by

qo F (a,: z’)%{%,ﬁh}, qo F (b, : :')HOIO,OH,
qi1 F(a,i—2)—q1, q1F (b, ) — q2,

q2 F(a, ) —q2, dqz2F (b, ) — q2,

{do,qd1} - (a, 2) — {40,491}, 190,91} F (b, é) —{do,4q1, d2},

{do,q1,q2} F (a, — ) = {do,d1,92}, {do0,91,92}F (b, '-7’3) — {40,491, 92},

where all states are accepting.
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A graph G = RoR; --- € R® is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[A(aldb)] = (a™b)®) if there is a word u x G € L such that G is accepting.
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A graph G = RoR; --- € R® is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[A(aldb)] = (a™b)®) if there is a word u x G € L such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating
automaton.
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26

A graph G = RoR; --- € R® is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[A(aldb)] = (a™b)®) if there is a word u x G € L such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating
automaton.

By McNauhton’s theorem the set G of all accepting G is recognized by a
deterministic parity automaton.

It follows that the language {(u,G) | (u,G) € L,G € G} is recognized by a parity

automaton (the product of the automata recognizing L and G).
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Part |
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a a
a
and have the same linear behaviour: a{b, ¢}
b c WA
b C
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a a
a
and have the same linear behaviour: a{b, ¢}
b c WA
b C

A branching property In every state where b is firable, c is firable too.
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a a
a
and have the same linear behaviour: a{b, ¢}
b ¥ ¢ WA
b C
YES NO

A branching property In every state where b is firable, c is firable too.
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a a
a
and b . have the same linear behaviour: a{b, ¢}
b C b c
YES NO

A branching property In every state where b is firable, c is firable too.

A minimal deterministic transition system P is fully determined by its linear
behaviour L(P). The above property can be expressed by

Vvue A*, (Iwe A :ubweL(P)) = (In' € A® :ucw’ € L(P))

which has not the linear form Vu € L(P),u € Spec
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Transition systems and monotonic functions

Let P = (S, s,, T) be a state-unlabelled transition system.

Let M(S) be the set of all monotonic functions over P(S)
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Let P = (S, s., T) be a state-unlabelled transition system.

Let M(S) be the set of all monotonic functions over P(S)

For every a € A, M(S) contains the two functions (a)p and [a]p from P(S) to
P(S) defined by

s {a)p(E)={seS|3(s,a,s')eT:s" €}
alalp(E)={seS|V(s,a,s’)eTs’ €t}

Duality: S — (a)p(E) = [a]p(S —E)
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Let P = (S, s., T) be a state-unlabelled transition system.

Let M(S) be the set of all monotonic functions over P(S)

For every a € A, M(S) contains the two functions (a)p and [a]p from P(S) to
P(S) defined by

s {a)p(E)={seS|3(s,a,s')eT:s" €}
alalp(E)={seS|V(s,a,s’)eTs’ €t}

Duality: S — (a)p(E) = [a]p(S —E)

Back to the exemple : [blp (0) U ({(b)p(S) A {(c)p(S)) =S
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Event CTL

Syntax

F = +true/falselFV FIFAF|
(a)F|[a]F| acA
(AR [AF]|(FUF)|[FUF]

MOVEP 2006 Bordeaux, june 2006



Syntax
F = +true/falselFV FIFAF|
(a)F|[a]F| acA
(AF)|[AF]|(FUF)|[F UF]
Semantics [Flp C S defined by induction on F

a [{(a)Flp = (a)p([Flp), IllalF]p = lalp([F]p),
(AF)p = vX.([Flp A (V ca(a)r (X)),
[

ﬂ
ﬂ

a3 [(FUFDp = uX.([FTe V (IFlp AV cafa)pX)),
[[FUF e = uX.([F]p V ([Flp A AgealalpX))

30
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Syntax
F = +true/falselFV FIFAF|
(a)F|[a]F| acA
(AF)|[AF]|(FUF)|[F UF]
Semantics [Flp C S defined by induction on F

a [{(a)Flp = (a)p([Flp), IllalF]p = lalp([F]p),
(AF)p = vX.([Flp A (V ca(a)r (X)),
[

ﬂ
ﬂ

a3 [(FUFDp = uX.([FTe V (IFlp AV cafa)pX)),
[[FUF e = uX.([F]p V ([Flp A AgealalpX))

P = Fiffs, € [Flp

30
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Example (and counter-example)

After an a, there will always be a b: [a]false V (a)[trueld(b)true]
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Example (and counter-example)

After an a, there will always be a b: [a]false V (a)[trueld(b)true]

After an a, there will always be infinitely many b’s
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Example (and counter-example)

After an a, there will always be a b: [a]false V (a)[truel/(b)true]

After an a, there will always be infinitely many b’s

f(X,Y) = (b)p(Y) UMy lclp(X) from P(S) x P(S) to P(S) in M(P),
g(Y) = uX.A(X,Y),

h =vY.g(Y),
[alp (D) U (a)p(h)
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Modal parity automata

A: <Q>q*>A>p> Wlth
1p:Q—N
aA:Q — P(C)where

3 C=P(QU{(a)qg,lalgla e A qgeQ)})

MOVEP 2006 Bordeaux, june 2006



32

"4: <Q>q*)A>p> Wlth
1p:Q—N
aA:Q — P(C) where

3 C=P(QU{(a)qg,lalgla e A qgeQ)})

Exemple: there will always be infinitely many b’s
(X, Y) = (®)p (YU Lplelp(X),  g(Y) = pXA(X,Y), h=vYg(Y)

Q =1{ax,dv}, d« = qv, p(dx) =1, p(qy) = 2,
Algx) = {{(b)av}, {lclax | ¢ # b} ] (to be read (b)qvy V (A, [cldx))
A(qy) ={{qx}} (to be read qx)
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Semantics
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Semantics

How to define (compute) [A]p ?
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Semantics

[Alp C P(S)
PEA& s, €|Alp

How to define (compute) [A]r? Using parity games or the p-calculus
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[Alp CP(S)

P':A<:>S*EHAHP

How to define (compute) [A]r? Using parity games or the p-calculus

[A]» is the component of index g, of the solution {E, | ¢ € Q} of a system of
fixed-point equations £(A, P).
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Let A whose set of statesis Q ={q1, ...

34

,qn}suchthati<j = p(qi) < plq;).

With any P we associate the system of n fixed-point equations (A, P):

X4

Xi

Xn

%1

s}
‘_l

@
I3

f](X])...,Xn)
fi(X1,...,Xn)
fn(X1,...,Xn)

\

> where 0;= pn if iis odd, v if i is even

/

and i (X1, ..., Xy ) is the monotonic function from P(S)™ to P(S) obtained by
substituting in A(q;)

a4 U for V, and N for A,

J Xj for d;
4 <CL>P(Xj) for <a>qj, and [G]P(Xj) for [Cl]q]'
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Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(X) C P(S)™ of

;

[en)
—_

X1

— f](X],XZ,...,Xn)

Xa 2 f5(X1, X2, .. Xn)
=4

CXn & (X0, X2, ... Xn)
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Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(X) C P(S)™ of

0
(X 2 11X, X2, .., Xn)
Xa 2 £(X1,X2,. .., Xn)
R
L X & (X0, X2, ... Xn)

Compute the monotonic function
g1(Xz2,..., Xn) = 01X1.f1(X1,X2,..., Xa) € P(S)™ ! = P(S)
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Computation (by induction on n) of the solution Sol(X) C P(S)™ of

0
(X 2 11X, X2, .., Xn)
Xa 2 f5(X1, X2, .. Xn)
=4
L X & (X0, X2, ... Xn)

Compute the monotonic function
g1 (Xz,..., Xn) =01 X7.F1 (X1, X2,..., Xn) € ’P(S)n_1 — P(S)

Compute the solution {E;,...E,} of X’

2

(ep)
N

X2

fz(g1(X2,...,Xn),Xz,...,Xn)
Y=

@
B

fn(g1(X2,... ,Xn),XZ,,... )Xn)
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Computation (by induction on n) of the solution Sol(X) C P(S)™ of

~
D
—_

X: 2 f1(X1, X2, ..., Xn)
Xa 2 f5(X1, X2, .. Xn)

=4
L X & (X0, X2, ... Xn)

Compute the monotonic function
g1 (Xz,..., Xn) =01 X7.F1 (X1, X2,..., Xn) € ’P(S)n_1 — P(S)

Compute the solution {E;,...E,} of X’

The solution of Zis{g1(E2,...,En),E2,...,En}

35
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Syntax

t == truelfalse|X|t V t|t A t|{a)t|[a]t|uX.tjvX.t

Semantics

For any transition system P, for any term t and for any sequence X, ... X, which
contains all the free variables of t we define by induction the monotonic function
[tlp (X1,..., X)) : P(S)™ — P(S).

Note: if t is closed then [t]p() C S.
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36

Syntax

t == truelfalse|X|t V t|t A t|{a)t|[a]t|uX.tjvX.t

Semantics

For any transition system P, for any term t and for any sequence X, ... X, which
contains all the free variables of t we define by induction the monotonic function
[tlp (X1,..., X)) : P(S)™ — P(S).

Note: if t is closed then [t]p() C S.

s if t = true (resp false) then [t]p (Eq,...,En) = S (resp. 0)

a if t = Xj then Htﬂp(E1,...,En) = E;

aift=t; V ta(resp. ) then
[tlp (E1,...,En) =Tt1lp(E1,...,Ex) Ut2]p(E1,..., Exn) (resp. N)

s if t = (a)t’ (resp [a]) then [t](Eq, ..., En) = (a)p([t']p(E1,...,En)) (resp.
[Cl]P)

sift =0X.t" then [t]p(E1,...,En) = OX. [t [p(X,Eq,..., En).
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Parity automata and p-calculus

Proposition For any automaton A there exists a u-term t_4 such that for any P,
[Alp = [tal().
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Parity automata and p-calculus

Proposition For any automaton A there exists a u-term t_4 such that for any P,
[Alp = [tal().

Let ti = A(qi) and fi(Xq, ... Xs) = [tilp (X5, ..., Xs)

( %

X1 = 1 ( X1 621 1 (X1,...,Xn)
X2 9:2 1) X2 622 fz(X1,...,Xn)

(A ¢ L(AP) S
\ Xn e:n th \ Xn 9:n fn(x1, ,Xn)
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Proposition For any automaton A there exists a u-term t_4 such that for any P,
[Alp = [tal().
Let ti = A(qgi) and fi(Xq,... Xn) = [ti]p(X1,..., Xx)

( X1 pal t4 ( X1 al f1(X1,...,Xn)
X2 9:2 1) X2 9:2 fz(X1,...,Xn)
(A (AP
[ Xn 2t L Xn B (X, Xa)
t1/ :e1X1 °t1 91(X2> >XT1) :91X1 'f1 (X1> >XT1) — ﬂt{HP(X2> )XTL)

37
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Proposition For any automaton A there exists a u-term t_4 such that for any P,

[Alp = [tal().

Let t; = A(qi) and fi(Xq,..

( X 62
X, 2
L(A) S
On
\ Xn —
t1/ = 01 X7.14
( Xz 922
(A<
X, =
\
§
X2
YA, P) S
Xn
\
MOVEP 2006

t
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Xn) =[tlp (X, ..., X))

y

L(A,P) 9

f1 (X1> )XTL)
fZ(X1> )XTL)
fTL(X1> )XTL)
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And vice-versa

Proposition For any closed term t there exists an automaton .4, such that
[tlp () = [A¢lp for any P.
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Proposition For any closed term t there exists an automaton .4, such that
[tlp () = [A+]p for any P.

An incomplete automaton is an automaton containing some states (say
qi,..., dx) for which p and A are not defined. (Obviously, q, must be defined.)
The “syntactic” solution of X(.A) contains the free variables X;, ..., Xx. Thus

[Alp (X1, ..., Xx) is a mapping from P(S)* — P(S).
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38

Proposition For any closed term t there exists an automaton .4, such that
[tlp () = [A+]p for any P.

Lemma For any term t whose free variables are X, ..., Xy, there is an incomplete
automaton A with undefined states g1, ..., qx, such that for any P,
HAHP(X1,. .. ,Xk) = Htﬂp(X1,... ,Xk).
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38

Proposition For any closed term t there exists an automaton .4, such that
[tlp () = [A+]p for any P.

Lemma For any term t whose free variables are X, ..., Xy, there is an incomplete
automaton A with undefined states g1, ..., qx, such that for any P,
[[A]]P(X1,. .. ,Xk) = Htﬂp(X1,... ,Xk).

Proof by induction. Let A" be “equivalent” to t; (X", ..., X\!).

1 The automaton equivalent to uX'" .t; is obtained by taking q\*’ as initial
state and defining it by p(qﬁ”) equal to any odd number greater than
palq), .- pla ) ), and Alay™) = {{qi} ).

2 The automaton equivalent to t; V t, (resp. t1 A t2) is obtained by adding to
the “disjoint” union of A"’ and A2’ the new initial state q, of rank 0 defined

by A(qx) = {{a}'"}, {a*)1] (resp. A(q,) = {{q\", q\*'}))
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MSOL-definability

Basic predicates V. (x,y): Va(s,s’)istrueinPif (s,a,s’) €T
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Basic predicates V. (x,y): Va(s,s')istrueinPif (s,a,s’) €T

Proposition For any u- term t, whose free variables are {X;, ..., X}, there

exists a formula F¢(z, X1, ..., Xn) in MSOL such that F¢(s,E1,... ,En) istruein P
iff s € [tlp(Eq1,...,En)
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39

Basic predicates V. (x,y): Va(s,s')istrueinPif (s,a,s’) €T

Proposition  For any u- term t, whose free variables are {X;,..., X}, there

exists a formula F¢(z, X1, ..., Xn) in MSOL such that F¢(s,E1,... ,En) istruein P
iff s € [tlp(Eq1,...,En)

Let G+ (Z,X1,...,Xn) beequaltoVz € Z,Fi(z,X1,...,Xn)
(sothat G¢(E,Eq,...Ex) truein Piff E = [t]p (E1,...,En))

g ift = (a)X then Fy(z,X) = 3Ix € X : Vq(z,x)

gift = uX1.t’then Fe(z, X2, ...
32z € ZNG/(Z,Z,X2, ...,

4 etc.

aXTl) —
Xn) AVX(G (X, X, X2,...,Xn) = Z C X).
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And the converse

IS false

F(X) = ¥x(x € X = Va(x,x))

In P; = (s, — s,), F(E)is true iff E = {s,}
NP> = (s, = s —s,), F(E)istrueiffE =0
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40

And the converse

IS false

F(X) = ¥x(x € X = Va(x,x))

In P; = (s, — s,), F(E)is true iff E = {s,}
NP> = (s, = s —s,), F(E)istrueiffE =0

For any closed p-term t, [t]p, = 0 iff [t]p, = 0
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40

IS false

F(X) =Vx(x € X = Va(x,x))
In P; = (s, — s,), F(E)is true iff E = {s,}
NP> = (s, = s —s,), F(E)istrueiffE =0
For any closed u-term t, [t]p, = 0 iff [t]p, =0

For any subset E of S; = {s,}, let E’ be the subset of S; = {s,,s} suchthat E’ = ()
ifEZ@&ﬂdE/:SZ ifEZS].
Then for any t, E = [t]p, (E1,...,En) iff E' = [t]p, (Eq,..., E]).
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40

IS false

F(X) = ¥x(x € X = Va(x,x))

In P; = (s, — s,), F(E)is true iff E = {s,}
NP> = (s, = s —s,), F(E)istrueiffE =0

For any closed pu-term t, [t]p, = 0 iff [t]p, = 0

Inductive proof of: For any t, E = [t]p, (E1,...,En) iff E' = [t]p, (E7,...,E]).

s (a)p, (0) = (a)p, (0) = la]p, (V) = [ ((Z) =
(a)p, (S1) = lalp,(S1) = 51, (a)p = lalp,(S2) =Sz
s Lett =Xyt let fi(X:,X2) = [t’ ]] (X1 ,X2) and gi(X2) = [tlp, (X2).
Let E1 = g;4 (Ez) = f4 (E1,E2).
s IfEr =0 =11(0,E2) then ) = f,(0,E;) hence and g (E;) = 0 = Ej.
a2 IfEy =Sy then f1(0,E2) = S1, hence
S» =12(0,E3) € fa(g92(E3),E3) = 92(E3), hence g2(E;) = S2 = Ey.
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a1

A bisimulation between P and P’ is a relation R C S x S’ such that
3 R(sy, 84)
3 If R(s,s’) then
aV(s,a,s1) € T,3(s",a,s7) €T :R(s1,s7),
aV(s' a,s1)eT’ 3(s,a,s1) €T:R(s1,s7),
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a1

A bisimulation between P and P’ is a relation R C S x S’ such that
3 R(sy, 84)
3 If R(s,s’) then
aV(s,a,s1) € T,3(s",a,s7) €T :R(s1,s7),
aV(s' a,s1)eT’ 3(s,a,s1) €T:R(s1,s7),

R = {(s4, S+), (s, s)} is a bisimulation between P; = (s, — s,) and

Py = (s, 5 s 5 sy).
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a1

A bisimulation between P and P’ is a relation R C S x S’ such that
3 R(s«, ss)
3 If R(s,s’) then
aV(s,a,s1) € T,3(s",a,s7) €T :R(s1,s7),
aV(s',a,s1) €T’ ,3(s,a,s1) € T:R(s1,s7),

R = {(s4, S+), (s, s)} is a bisimulation between P; = (s, — s,) and

Py = (s, 5 s 5 sy).

Fact

4 If R is a bisimulation between P and P’ then R~ is a bisimulation between
P’and P.

a If R is a bisimulation between P and P’, and if R’ is a bisimulation between P’
and P”, then R o R’ is a bisimulation between P and P”
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Saturated sets

Let R be a bisimulation between P and P’. A subset E of S is R-saturated if
R™T(R(E)) = E. (i.e. if R(s1,s’) and R(s2,s’) thens; € E & s; € E).
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Let R be a bisimulation between P and P’. A subset E of S is R-saturated if
R™T(R(E)) = E. (i.e. if R(s1,s’) and R(s2,s’) thens; € E & s; € E).

Fact

s If E is R-saturated then R(E) is R~ ' -saturated.
2 () and S are R-saturated.

u if E1 and E, are R-saturated then E; UE,, E1 NEy,and S — E; are
R-saturated.
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Proposition Let P and P’. If there is a bisimulation between P and P’ then for any
(closed) automaton A, PE A« P’ A.

Lemma Let R be a bisimulation between P and P’.
For any u-term t and any R-saturated subsets E, ..., Enq,

s thesetE = [t]p(Eq,..., E.) is R-saturated.
o R(E) = [tlp/(R(E1),...,R(En)).

Corollary [Alp is R-saturated and [A]p = R([.A]p) hence [A]lp =R ([A]lp-).
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All the previous definitions ([ A]p, [tlp (X1, ..., X} ), bisimulation) and results
(parity automata & u-terms = MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.
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All the previous definitions ([ A]p, [tlp (X1, ..., X} ), bisimulation) and results
(parity automata & u-terms = MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

MOVEP 2006 Bordeaux, june 2006



44

All the previous definitions ([ A]p, [tlp (X1, ..., X} ), bisimulation) and results

(parity automata & u-terms = MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model (3P : P = A) then it has a finite model.
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All the previous definitions ([ A]p, [tlp (X1, ..., X} ), bisimulation) and results
(parity automata & u-terms = MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model (3P : P = A) then it has a finite model.

Fact MSOL has NOT the finite model property.
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44

All the previous definitions ([ A]p, [tlp (X1, ..., X} ), bisimulation) and results
(parity automata & u-terms = MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model (3P : P = A) then it has a finite model.

Fact MSOL has NOT the finite model property.

V(x,y) = Vaea Valx,y), F=9x,Fy:Vix,y) A WVy((Ix:V(xy)) =
v, x (VG y) A VX, y) = x =x"))
(i.e. each state is of indegree at most 1)

F is true in P iff P is an infinite tree.
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MSOL and bisimulation invariance

A MSOL-formula F(x) with one free variable is bisimulation-invariant if

for any P, P/, any bisimulation R between P and P’ and any (s,s’) € R one has:
F(s) is true in P iff F(s’) is true in P’
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45

A MSOL-formula F(x) with one free variable is bisimulation-invariant if

for any P, P/, any bisimulation R between P and P’ and any (s,s’) € R one has:
F(s) is true in P iff F(s’) is true in P’

Theorem [Janin-Walukiewicz, 1996]

If F(x) is bisimulation-invariant then there exists A such that for any P and s,
F(s)istruein Piff s € [A]p.
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Satisfiability and the problem of conjunction

A closed u-term t is satisfiable (denoted by = t) if there is a P such that P =t (i.e.
S« € ﬂtHP)

Fact = tiff 3P : [t]p A0 (One can take any state in [t]p as initial state)
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A closed p-term t is satisfiable (denoted by = t) if there isa P such that P =t (i.e.
S« € ﬂtHP)

Fact = tiff 3P : [t]p A0 (One can take any state in [t]p as initial state)

Let t and t’ be two closed terms.

s E=tVt'iff =tor=t’ (because [tV t']p = [t]p V [t']p)
a2 E=tAt implies = tyet=t’
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A closed p-term t is satisfiable (denoted by = t) if there isa P such that P =t (i.e.
S« € HtHP)

Fact = tiff 3P : [t]p A0 (One can take any state in [t]p as initial state)

Let t and t’ be two closed terms.

s E=tVt'iff =tor=t’ (because [tV t']p = [t]p V [t']p)
a2 E=tAt implies = tyet=t’

The converse is not always true:

= (a)true and = [a]false but (£ (a)true A [a]false
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46

A closed p-term t is satisfiable (denoted by = t) if there isa P such that P =t (i.e.
S« € HtHP)

Fact = tiff 3P : [t]p A0 (One can take any state in [t]p as initial state)
Let t and t’ be two closed terms.

s E=tVt'iff =tor=t’ (because [tV t']p = [t]p V [t']p)
a2 E=tAt implies = tyet=t’

The converse is not always true:
= (a)true and = [a]false but (£ (a)true A [a]false

and not always false:

= (a)true and = [b]false but = (a)true A [b]false
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Guarded p-terms

Some conjunction are problematic ((a)true A [alfalse),
some are not problematic ({a)true A [a]false)
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Some conjunction are problematic ((a)true A [alfalse),
some are not problematic ({a)true A [a]false)

But some are of unknown status: vX.t(nY. (XAt (X, Y)))
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Some conjunction are problematic ((a)true A [alfalse),
some are not problematic ({a)true A [a]false)

But some are of unknown status: vX.t(nY. (XAt (X, Y)))

A u-term is guarded if each occurrence of a variable X appears in a subterm (a)X
or [a]X
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Some conjunction are problematic ((a)true A [alfalse),
some are not problematic ({a)true A [a]false)

But some are of unknown status: vX.t(nY. (XAt (X, Y)))

A u-term is guarded if each occurrence of a variable X appears in a subterm (a)X
or [a]X

Theorem Each u-term is (effectively) equivalent to a guarded one

Corollary Each automaton is equivalent to a guarded automaton A
i.e. where A:Q — P(C) where C = P({{a)q,lalq | a € A, q € Q}) instead of
C =P(QuU{{a)q,lalq|a e A,q € Q)
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Simulation Theorem

Elimination (in a guarded automaton) of all problematic conjunctions

(powerset construction + histories + MacNaughton)
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Elimination (in a guarded automaton) of all problematic conjunctions

(powerset construction + histories + MacNaughton)

Theorem [Janin-Walukiewicz, 1995]

Every automaton is equivalent to an automaton A such that any conjunction
c € A(q) hasthe form A _,(a)q1 A---A(a)qn Alal(g1 V- -V dn)
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