
1

Logics, automata, and behavioural
properties of discrete event

systems
André Arnold

MOVEP 2006 Bordeaux, june 2006



2

WHAT

Definition of a (finite) discrete event system P

Definition of a finite or infinite object Beh(P) representing the “behaviour” of P

Definition of a logic L whose formulas F express properties of Beh(P)
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WHAT

Definition of a (finite) discrete event system P

Definition of a finite or infinite object Beh(P) representing the “behaviour” of P

Definition of a logic L whose formulas F express properties of Beh(P)

Several possibilities for each definition
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WHY

Depending on the choice of Beh and L

Model-checking Given P and F in L,
does Beh(P) has property F? (complexity)

Satisfiability Given F,
does there exist P such Beh(P) has property F? (decidability, complexity)

Synthesis Given F,
find a P such Beh(P) has property F (if any) (complexity)
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HOW

I. Logics for linear behaviour

II. Logics for branching behaviour
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Transition systems

Let A be a set of events, and Λ be a set of labels

A transition system (or discrete event systems) is a tuple P = 〈S, s!, T, λ〉
where

S is a finite set of states
s! ∈ S is the initial state
T ⊆ S × A × S is the set of transitions
λ : S → Λ is a labelling mapping
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Transition systems

Let A be a set of events, and Λ be a set of labels

A transition system (or discrete event systems) is a tuple P = 〈S, s!, T, λ〉
where

S is a finite set of states
s! ∈ S is the initial state
T ⊆ S × A × S is the set of transitions
λ : S → Λ is a labelling mapping

Remark Usually, Λ = P(Prop) for some set Prop of local properties (possibly
empty!), but nothing forbids Λ = S and λ = idS .

MOVEP 2006 Bordeaux, june 2006



6

Part I
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Linear behaviour

A path of P = 〈S, s!, T, λ〉 is an infinite sequence s0a0s1a1 · · · snansn+1an+1 · · ·
(with si ∈ S and ai ∈ A) such that

s0 = s!,
∀n ∈ N, (sn , an , sn+1) ∈ T

The trace of the path s0a0s1a1 · · · snansn+1an+1 · · · is the sequence
a0a1 · · ·anan+1 · · · ∈ Aω (event trace)
λ(s0)λ(s1) · · · λ(sn)λ(sn+1) · · · ∈ Λω (label trace)
(λ(s0), a0)(λ(s1), a1) · · · (λ(sn), an)(λ(sn+1), an+1) · · · ∈ (Λ × A)ω (full
trace)
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Linear behaviour

A path of P = 〈S, s!, T, λ〉 is an infinite sequence s0a0s1a1 · · · snansn+1an+1 · · ·
(with si ∈ S and ai ∈ A) such that

s0 = s!,
∀n ∈ N, (sn , an , sn+1) ∈ T

The trace of the path s0a0s1a1 · · · snansn+1an+1 · · · is the sequence
a0a1 · · ·anan+1 · · · ∈ Aω (event trace)
λ(s0)λ(s1) · · · λ(sn)λ(sn+1) · · · ∈ Λω (label trace)
(λ(s0), a0)(λ(s1), a1) · · · (λ(sn), an)(λ(sn+1), an+1) · · · ∈ (Λ × A)ω (full
trace)

Given a type of trace, Beh(P) is the set of traces of all paths in P
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Unlabelling states

Without loss of generality, we may consider only event traces of state-unlabelled
transition systems.

P = 〈S, s!, T, λ〉 over A and Λ → P ′ = 〈S, s!, T ′, λ ′〉 over B and P(∅)

where
label trace

B = Λ

T ′ = {(s, λ(s), s ′) | ∃a ∈ A : (s, a, s ′) ∈ T }

full trace
B = Λ × A

T ′ = {(s, (λ(s), a), s ′) | (s, a, s ′) ∈ T }
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Specifications

Beh(P) is a subset of Bω where B = A,Λ,Λ × A according to the type of trace.

MOVEP 2006 Bordeaux, june 2006



9

Specifications

Beh(P) is a subset of Bω where B = A,Λ,Λ × A according to the type of trace.

A specification Spec is a subset of Bω

Beh(P) satisfies Spec iff Beh(P) ⊆ Spec

iff Beh(P) ∩ (Bω − Spec) = ∅.
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Specifications

Beh(P) is a subset of Bω where B = A,Λ,Λ × A according to the type of trace.

A specification Spec is a subset of Bω

Beh(P) satisfies Spec iff Beh(P) ⊆ Spec

iff Beh(P) ∩ (Bω − Spec) = ∅.

⇒ Definition of subsets of Bω
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Büchi automata

A Büchi automaton A over A is a pair (〈Q, q!, ∆〉, QF) where 〈Q, q!, ∆〉 is an
unlabelled transition system and QF is a subset of Q.

An infinite word u = a0a1 · · · is recognized by A if it is the trace of an accepting
path π = q!a0q1a1q2 · · · , i.e., which contains infinitely many qi in QF .

L(A) ⊆ Aω is the set of all words recognized by A.
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Recognizable sets

A set L ⊆ Aω is recognizable if there is a A such that L = L(A).

Closure properties

If L and L ′ are recognizable subsets of Aω then L ∪ L ′ and L ∩ L ′ are
recognizable.
If L is recognizable then Bω − L is recognizable.
Let π : A → B. Let π(L) = {π(a0)π(a1) · · · | a0a1 · · · ∈ L} ⊆ Bω . If L is
recognizable then π(L) is recognizable.
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Recognizable sets

A set L ⊆ Aω is recognizable if there is a A such that L = L(A).

Closure properties

If L and L ′ are recognizable subsets of Aω then L ∪ L ′ and L ∩ L ′ are
recognizable.
If L is recognizable then Bω − L is recognizable.
Let π : A → B. Let π(L) = {π(a0)π(a1) · · · | a0a1 · · · ∈ L} ⊆ Bω . If L is
recognizable then π(L) is recognizable.

Proof

If L = L(A) [and L ′ = L(A ′)] one can construct A ′′ such that L(A ′′) is equal to

what is needed.
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Satisfiability and model-checking

Proposition
L(A) is not empty iff A contains a state q1 reachable fromq! and a cycle
q1a1q2 · · ·qnanq1 which contains a state qj ∈ QF .

Decidable in linear time (Tarjan’s algorithm for strongly connected components)
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Satisfiability and model-checking

Proposition
L(A) is not empty iff A contains a state q1 reachable fromq! and a cycle
q1a1q2 · · ·qnanq1 which contains a state qj ∈ QF .

Decidable in linear time (Tarjan’s algorithm for strongly connected components)

Beh(P) ∩ L(A) is recognized by the automaton B = (〈S × Q, (s!, q!), Γ 〉, S × QF)

where

((s, q), a, (s ′, q ′)) ∈ Γ iff (s, a, s ′) ∈ T and (q, a, q ′) ∈ ∆.
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Deterministic automata

For any state q, ∆(q) contains at most one state.
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Deterministic automata

For any state q, ∆(q) contains at most one state.

Not every recognizable language is recognized by a deterministic Büchi
automaton
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Deterministic automata

For any state q, ∆(q) contains at most one state.

Not every recognizable language is recognized by a deterministic Büchi
automaton

counter example
Let L = {a, b}∗aω . Let us assume that A is a deterministic Büchi automaton with
n states which recognizes L.
For any (reachable) state q there exist a state q ′ and a state q ′′ ∈ QF such that

q
am

→ q ′ ai

→ q ′′ aj

→ q ′ with m + i + j = n.
It follows that the unique path for (anb)ω is accepting.
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Other kinds of automata

Let P = 〈Q, q!, ∆〉 be a transition system and let π = q!a0q1a1q2 · · · be a path.
Let Inf(π) be the set of all states ocuring infinitely often in π.

Büchi automaton (P, F) where F ⊆ Q. π is accepting if Inf(π) ∩ F not empty

Muller automaton (P,F) where F ⊆ P(Q). π is accepting if Inf(π) ∈ F .

Parity automaton(P, ρ) where ρ : Q → N. π is accepting if max{ρ(q) | q ∈ Inf(π)} is
even.
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Other kinds of automata

Let P = 〈Q, q!, ∆〉 be a transition system and let π = q!a0q1a1q2 · · · be a path.
Let Inf(π) be the set of all states ocuring infinitely often in π.

Büchi automaton (P, F) where F ⊆ Q. π is accepting if Inf(π) ∩ F not empty

Muller automaton (P,F) where F ⊆ P(Q). π is accepting if Inf(π) ∈ F .

Parity automaton(P, ρ) where ρ : Q → N. π is accepting if max{ρ(q) | q ∈ Inf(π)} is
even.

Büchi to parity: ρ(q) =

{
2 if q ∈ F

1 otherwise
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Determinisation of automata

Theorem[McNaughton, 1966] and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a
deterministic parity automaton.
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Determinisation of automata

Theorem[McNaughton, 1966] and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a
deterministic parity automaton.

Example
Let A = {a0 , a1 , a2} and let L = A∗aω

0 ∪ (A∗a2)ω .

Q = {q0, q1 , q2}, q! = q0 , ρ(qi) = i.

∀i, j, ∆(qi, aj) = {qj}.
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From automata to logic

Let A= (〈Q, q!, ∆〉, QF) be a Büchi automaton and let u ∈ Aω seen as a mapping
u : N → A (i.e., u = u(0)u(1) · · ·u(n) · · · ).
u is recognized by A iff with each q ∈ Q is associated a subset Eq of N such that

these subsets form a partition of N, more precisely
they are pairwise disjoint: ∀q, q ′ ∈ Q, q += q ′ ⇒ Eq ∩ Eq ′ = ∅

they cover N: N ⊆
S

q∈Q Eq

0 ∈ Eq!

for any n ∈ N there exists (q, a, q ′) ∈ ∆ such that n ∈ Eq , u(n) = a, and
n + 1 ∈ Eq ′

there exists q ∈ QF such that Eq is infinite (i.e., ∀n ∈ N, ∃m ∈ Eq : n ≤ m)
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From automata to logic

Let A= (〈Q, q!, ∆〉, QF) be a Büchi automaton and let u ∈ Aω seen as a mapping
u : N → A (i.e., u = u(0)u(1) · · ·u(n) · · · ).
u is recognized by A iff with each q ∈ Q is associated a subset Eq of N such that

these subsets form a partition of N, more precisely
they are pairwise disjoint: ∀q, q ′ ∈ Q, q += q ′ ⇒ Eq ∩ Eq ′ = ∅

they cover N: N ⊆
S

q∈Q Eq

0 ∈ Eq!

for any n ∈ N there exists (q, a, q ′) ∈ ∆ such that n ∈ Eq , u(n) = a, and
n + 1 ∈ Eq ′

there exists q ∈ QF such that Eq is infinite (i.e., ∀n ∈ N, ∃m ∈ Eq : n ≤ m)
Trivia n + 1 ∈ E iff ∃m ∈ E : n ≤ m and ∀k ∈ N(k ≤ n or m ≤ k)

0 ∈ E iff ∃m ∈ E : ∀k ∈ N, m ≤ k
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Monadic second order logic

Let Var0 be a set of individual variables and Var1 be a set of set variables. For
each a ∈ A let Va be a unary predicate.
The formulas are defined inductively by

Va(x) with x ∈ Var0 and a ∈ A

x ≤ y, x ∈ X with x, y ∈ Var0 and X ∈ Var1 ,
F ∨ F ′, F ∧ F ′, ¬F, with F and F ′ are formulas.
∃xF, ∀xF, ∃XF, ∀XF, with x ∈ Var0 , X ∈ Var1 , and F a formula.
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Monadic second order logic

Let Var0 be a set of individual variables and Var1 be a set of set variables. For
each a ∈ A let Va be a unary predicate.
The formulas are defined inductively by

Va(x) with x ∈ Var0 and a ∈ A

x ≤ y, x ∈ X with x, y ∈ Var0 and X ∈ Var1 ,
F ∨ F ′, F ∧ F ′, ¬F, with F and F ′ are formulas.
∃xF, ∀xF, ∃XF, ∀XF, with x ∈ Var0 , X ∈ Var1 , and F a formula.

Let F(x, x ′, . . . , X, X ′, . . .) be a formula whose free variables are
x, x ′, . . .(individual) and X, X ′, . . . (set). Let u be a word.
Let n, n ′, . . . (resp., E, E ′, . . . ) be natural numbers (resp. sets) associated with the
free individual (resp. set) variables of F.
We define (by induction) the satisfaction relation u |= F(n, n ′, . . . , E, E ′, . . .) which
means that F(n, n ′, . . . , E, E ′ . . .) is true in u by

u |= Va(n) iff u(n) = a

· · · · · · straightforward!
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MSOL definability

A set L ⊆ Aω is MSOL-definable if there is a closed formula F such that
L = {u | u |= F}

Theorem[Büchi, 1960]
A set L is recognizable iff it is MSOL definable.

Proof
⇒ see above
⇐ by induction, using the closure properties given above
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First-order definabiliy

Every FOL-definable language is MSOL-definable.

The converse is not true! Example {u ∈ {a, b}ω | u(n) = a ⇒ n is even}.

Theorem[Kamp, 1968]

A language is FOL-definable iff it is LTL-definable
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LTL

F ::= true|false|a|¬a|b|¬b| · · · |

F ∨ F|F ∧ F|¬F|

NF|AF|F UF

Definition of u |= F.
Let u[i] be the suffix u(i)u(i + 1) · · · of u.

u |= true, u +|= false

u |= a iff u(0) = a.
u |= F ∨ F ′ (resp. ∧) iff u |= F or (resp. and) u |= F ′

u |= NF iff u[1] |= F,
u |= AF iff ∀i, u[i] |= F,
u |= FUF ′ iff there exists i such that

u[i] |= F ′ and ∀j, 0 ≤ j < i ⇒ u[j] |= F
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Duality

Extension of De Morgan’s law
¬NF ≡ N¬F

¬AF ≡ trueU¬F

¬(FUF ′) ≡ (A¬F ′) ∨ (¬F ′)U(¬F ∧ ¬F ′)
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LTL to FOL

By induction on F in LTL : there exists bF(x) in FOL such that

∀i, (u[i] |= F ⇔ u |= bF(i))

ba = Va(x),
dNF = bF(x + 1),
cAF = ∀y, (x ≤ y ⇒ bF(y)),

F̂UF ′ = ∃y : x ≤ y ∧ bF ′(y) ∧ ∀z(x ≥ z < y ⇒ bF(z)).
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Fixed points in LTL

With a formula F we associate the defined language [|F|] = {u | u |= F}.

[|AF|] is the greatest language L such that L = [|F|] ∩ AL.
[|FUF ′|] is the least language L such that L = [|F ′|] ∪ ([|F|] ∩ AL).
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Fixed points in LTL

With a formula F we associate the defined language [|F|] = {u | u |= F}.

[|AF|] is the greatest language L such that L = [|F|] ∩ AL.
[|FUF ′|] is the least language L such that L = [|F ′|] ∪ ([|F|] ∩ AL).

Notation

[|AF|] = νL.([|F|] ∩ AL).
[|FUF ′|] = µL.([|F ′|] ∪ ([|F|] ∩ AL)).
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Alternating automata

[|aUb|] = a∗b{a, b}ω is recognized by
q1

a
→ q1, q1

b
→ q2 , q2

a
→ q2 , q2

b
→ q2 ,

[|A(aUb)|] = (a∗b)ω is recognized by adding
q0

a
→ q0 ∧ q1 , q0

b
→ q0 ∧ q1 , with initial state q0 ∧ q1 .

!1 !"2a
a, b

a, b!
!

"

#

$
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Alternating automata

[|aUb|] = a∗b{a, b}ω is recognized by
q1

a
→ q1, q1

b
→ q2 , q2

a
→ q2 , q2

b
→ q2 ,

[|A(aUb)|] = (a∗b)ω is recognized by adding
q0

a
→ q0 ∧ q1 , q0

b
→ q0 ∧ q1 , with initial state q0 ∧ q1 .

How to get a nondeterministic automaton (possibly deterministic)

!1 !"2a
a, b

a, b!
!

"

#

$
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Alternating automata

[|aUb|] = a∗b{a, b}ω is recognized by
q1

a
→ q1, q1

b
→ q2 , q2

a
→ q2 , q2

b
→ q2 ,

[|A(aUb)|] = (a∗b)ω is recognized by adding
q0

a
→ q0 ∧ q1 , q0

b
→ q0 ∧ q1 , with initial state q0 ∧ q1 .

The usual powerset construction does not work!
{q0, q1}

a
→ {q0 , q1}, {q0 , q1}

b
→ {q0, q1, q2},

{q0, q1 , q2}
a
→ {q0, q1 , q2}, {q0 , q1 , q2}

b
→ {q0 , q1 , q2},

!1 !"2a
a, b

a, b!
!

"

#

$
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Alternating automata

[|aUb|] = a∗b{a, b}ω is recognized by
q1

a
→ q1, q1

b
→ q2 , q2

a
→ q2 , q2

b
→ q2 ,

[|A(aUb)|] = (a∗b)ω is recognized by adding
q0

a
→ q0 ∧ q1 , q0

b
→ q0 ∧ q1 , with initial state q0 ∧ q1 .

The usual powerset construction does not work!
{q0, q1}

a
→ {q0 , q1}, {q0 , q1}

b
→ {q0, q1, q2},

{q0, q1 , q2}
a
→ {q0, q1 , q2}, {q0 , q1 , q2}

b
→ {q0 , q1 , q2},

!1 !"2a
a, b

a, b!
!

"

#

$

If bω is recognized then baω is recognized as well
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Histories

Let R be the set of binary relations over {q0, q1 , q2}. Example: R = q1 q1

q0 q0

q2 q2

Let us define the language L on A ×R recognized by

q0 / (a, ) → {q0, q1}, q0 / (b, ) → q0 , q1 ,

q1 / (a, ) → q1, q1 / (b, ) → q2,

q2 / (a, ) → q2, q2 / (b, ) → q2,

{q0, q1} / (a, ) → {q0 , q1}, {q0 , q1} / (b, ) → {q0 , q1, q2},

{q0, q1 , q2} / (a, ) → {q0, q1 , q2}, {q0 , q1 , q2} / (b, ) → {q0, q1 , q2},

where all states are accepting.
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Accepting graphs

A graph G = R0R1 · · · ∈ Rω is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[|A(aUb)|] = (a∗b)ω) if there is a word u × G ∈ L such that G is accepting.
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Accepting graphs

A graph G = R0R1 · · · ∈ Rω is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[|A(aUb)|] = (a∗b)ω) if there is a word u × G ∈ L such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating
automaton.
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Accepting graphs

A graph G = R0R1 · · · ∈ Rω is accepting if all its infinite paths satisfy the parity
condition.

A word u is recognized by the previous alternating automata (i.e., is in
[|A(aUb)|] = (a∗b)ω) if there is a word u × G ∈ L such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating
automaton.

By McNauhton’s theorem the set G of all accepting G is recognized by a
deterministic parity automaton.

It follows that the language {(u, G) | (u, G) ∈ L, G ∈ G} is recognized by a parity

automaton (the product of the automata recognizing L and G).
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Part II
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Branching properties

a

b c
and

a a

b c

b c

have the same linear behaviour: a{b, c}ω
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Branching properties

a

b c
and

a a

b c

b c

have the same linear behaviour: a{b, c}ω

A branching property In every state where b is firable, c is firable too.
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Branching properties

YES

a

b c
and

a a

b c

b c

NO

have the same linear behaviour: a{b, c}ω

A branching property In every state where b is firable, c is firable too.
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Branching properties

YES

a

b c
and

a a

b c

b c

NO

have the same linear behaviour: a{b, c}ω

A branching property In every state where b is firable, c is firable too.

A minimal deterministic transition system P is fully determined by its linear
behaviour L(P). The above property can be expressed by

∀u ∈ A∗, (∃w ∈ Aω : ubw ∈ L(P)) ⇒ (∃w ′ ∈ Aω : ucw ′ ∈ L(P))

which has not the linear form ∀u ∈ L(P), u ∈ Spec
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Transition systems and monotonic functions

Let P = 〈S, s!, T 〉 be a state-unlabelled transition system.

LetM(S) be the set of all monotonic functions over P(S)
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Transition systems and monotonic functions

Let P = 〈S, s!, T 〉 be a state-unlabelled transition system.

LetM(S) be the set of all monotonic functions over P(S)

For every a ∈ A,M(S) contains the two functions 〈a〉P and [a]P from P(S) to
P(S) defined by

〈a〉P(E) = {s ∈ S | ∃(s, a, s ′) ∈ T : s ′ ∈ E}

[a]P(E) = {s ∈ S | ∀(s, a, s ′) ∈ T, s ′ ∈ E}

Duality: S − 〈a〉P(E) = [a]P(S − E)
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Transition systems and monotonic functions

Let P = 〈S, s!, T 〉 be a state-unlabelled transition system.

LetM(S) be the set of all monotonic functions over P(S)

For every a ∈ A,M(S) contains the two functions 〈a〉P and [a]P from P(S) to
P(S) defined by

〈a〉P(E) = {s ∈ S | ∃(s, a, s ′) ∈ T : s ′ ∈ E}

[a]P(E) = {s ∈ S | ∀(s, a, s ′) ∈ T, s ′ ∈ E}

Duality: S − 〈a〉P(E) = [a]P(S − E)

Back to the exemple : [b]P(∅) ∪ (〈b〉P(S) ∧ 〈c〉P(S)) = S
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Event CTL

Syntax

F ::= true|false|F ∨ F|F ∧ F|

〈a〉F|[a]F| a ∈ A

〈AF〉|[AF]|〈FUF〉|[FUF]
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Event CTL

Syntax

F ::= true|false|F ∨ F|F ∧ F|

〈a〉F|[a]F| a ∈ A

〈AF〉|[AF]|〈FUF〉|[FUF]

Semantics [|F|]P ⊆ S defined by induction on F

[|〈a〉F|]P = 〈a〉P([|F|]P ), [|[a]F|]P = [a]P([|F|]P),
[|〈AF〉|]P = νX.([|F|]P ∧ (

W
a∈A〈a〉P(X))),

[|[AF]|]P = νX.([|F|]P ∧ (
V

a∈A [a]P(X))),

[|〈FUF ′〉|]P = µX.([|F ′|]P ∨ ([|F|]P ∧
W

a∈A〈a〉PX)),
[|[FUF ′]|]P = µX.([|F ′|]P ∨ ([|F|]P ∧

V
a∈A [a]PX))
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30

Event CTL

Syntax

F ::= true|false|F ∨ F|F ∧ F|

〈a〉F|[a]F| a ∈ A

〈AF〉|[AF]|〈FUF〉|[FUF]

Semantics [|F|]P ⊆ S defined by induction on F

[|〈a〉F|]P = 〈a〉P([|F|]P ), [|[a]F|]P = [a]P([|F|]P),
[|〈AF〉|]P = νX.([|F|]P ∧ (

W
a∈A〈a〉P(X))),

[|[AF]|]P = νX.([|F|]P ∧ (
V

a∈A [a]P(X))),

[|〈FUF ′〉|]P = µX.([|F ′|]P ∨ ([|F|]P ∧
W

a∈A〈a〉PX)),
[|[FUF ′]|]P = µX.([|F ′|]P ∨ ([|F|]P ∧

V
a∈A [a]PX))

P |= F iff s! ∈ [|F|]P
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Example (and counter-example)

After an a, there will always be a b: [a]false ∨ 〈a〉[trueU〈b〉true]
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Example (and counter-example)

After an a, there will always be a b: [a]false ∨ 〈a〉[trueU〈b〉true]

After an a, there will always be infinitely many b’s
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Example (and counter-example)

After an a, there will always be a b: [a]false ∨ 〈a〉[trueU〈b〉true]

After an a, there will always be infinitely many b’s

f(X, Y) = 〈b〉P(Y) ∪
T

c $=b [c]P(X) from P(S) ×P(S) to P(S) inM(P),

g(Y) = µX.f(X, Y),
h = νY.g(Y),
[a]P(∅) ∪ 〈a〉P(h)
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Modal parity automata

A = 〈Q, q!, ∆, ρ〉 with
ρ : Q → N

∆ : Q → P(C) where

C = P(Q ∪ {〈a〉q, [a]q | a ∈ A, q ∈ Q})
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32

Modal parity automata

A = 〈Q, q!, ∆, ρ〉 with
ρ : Q → N

∆ : Q → P(C) where

C = P(Q ∪ {〈a〉q, [a]q | a ∈ A, q ∈ Q})

Exemple: there will always be infinitely many b’s
f(X, Y) = 〈b〉P(Y) ∪

T
c $=b [c]P(X), g(Y) = µX.f(X, Y), h = νY.g(Y)

Q = {qX, qY }, q! = qY , ρ(qX) = 1, ρ(qY ) = 2,
∆(qX) = { {〈b〉qY }, {[c]qX | c += b} } (to be read 〈b〉qY ∨ (

V
c $=b [c]qX))

∆(qY ) = {{qX}} (to be read qX)
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Semantics

[|A|]P ⊆ P(S)

P |= A ⇔ s! ∈ [|A|]P
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Semantics

[|A|]P ⊆ P(S)

P |= A ⇔ s! ∈ [|A|]P

How to define (compute) [|A|]P?
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Semantics

[|A|]P ⊆ P(S)

P |= A ⇔ s! ∈ [|A|]P

How to define (compute) [|A|]P? Using parity games or the µ-calculus
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Semantics

[|A|]P ⊆ P(S)

P |= A ⇔ s! ∈ [|A|]P

How to define (compute) [|A|]P? Using parity games or the µ-calculus

[|A|]P is the component of index q! of the solution {Eq | q ∈ Q} of a system of
fixed-point equations Σ(A, P).
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Systems of equations

Let A whose set of states is Q = {q1, . . . , qn} such that i < j ⇒ ρ(qi) ≤ ρ(qj).
With any P we associate the system of n fixed-point equations Σ(A, P):

X1
θ1= f1(X1 , . . . , Xn)

...
Xi

θi= fi(X1 , . . . , Xn)

...
Xn

θn= fn(X1 , . . . , Xn)






where θi= µ if i is odd, ν if i is even

and fi(X1 , . . . , Xn) is the monotonic function from P(S)n to P(S) obtained by
substituting in ∆(qi)

∪ for ∨, and ∩ for ∧,
Xj for qj

〈a〉P(Xj) for 〈a〉qj , and [a]P(Xj) for [a]qj
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Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(Σ) ⊆ P(S)n of

Σ =






X1
θ1= f1(X1 , X2 , . . . , Xn)

X2
θ2= f2(X1 , X2 , . . . , Xn)

...
Xn

θn= fn(X1 , X2 , . . . , Xn)
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35

Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(Σ) ⊆ P(S)n of

Σ =






X1
θ1= f1(X1 , X2 , . . . , Xn)

X2
θ2= f2(X1 , X2 , . . . , Xn)

...
Xn

θn= fn(X1 , X2 , . . . , Xn)

Compute the monotonic function
g1(X2 , . . . , Xn) = θ1X1 .f1(X1 , X2 , . . . , Xn) ∈ P(S)n−1 → P(S)
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35

Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(Σ) ⊆ P(S)n of

Σ =






X1
θ1= f1(X1 , X2 , . . . , Xn)

X2
θ2= f2(X1 , X2 , . . . , Xn)

...
Xn

θn= fn(X1 , X2 , . . . , Xn)

Compute the monotonic function
g1(X2 , . . . , Xn) = θ1X1 .f1(X1 , X2 , . . . , Xn) ∈ P(S)n−1 → P(S)

Compute the solution {E2 , . . . En} of Σ ′

Σ ′ =






X2
θ2= f2(g1(X2 , . . . , Xn), X2 , . . . , Xn)

...
Xn

θn= fn(g1(X2 , . . . , Xn), X2 , , . . . , Xn)
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35

Solving a system of fixed-point equations

Computation (by induction on n) of the solution Sol(Σ) ⊆ P(S)n of

Σ =






X1
θ1= f1(X1 , X2 , . . . , Xn)

X2
θ2= f2(X1 , X2 , . . . , Xn)

...
Xn

θn= fn(X1 , X2 , . . . , Xn)

Compute the monotonic function
g1(X2 , . . . , Xn) = θ1X1 .f1(X1 , X2 , . . . , Xn) ∈ P(S)n−1 → P(S)

Compute the solution {E2 , . . . En} of Σ ′

The solution of Σ is {g1(E2 , . . . , En), E2, . . . , En}
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The modal µ-calculus

Syntax

t ::= true|false|X|t ∨ t|t ∧ t|〈a〉t|[a]t|µX.t|νX.t

Semantics

For any transition system P, for any term t and for any sequence X1 , . . . Xn which
contains all the free variables of t we define by induction the monotonic function
[|t|]P (X1 , . . . , Xn) : P(S)n → P(S).
Note: if t is closed then [|t|]P () ⊆ S.
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36

The modal µ-calculus

Syntax

t ::= true|false|X|t ∨ t|t ∧ t|〈a〉t|[a]t|µX.t|νX.t

Semantics

For any transition system P, for any term t and for any sequence X1 , . . . Xn which
contains all the free variables of t we define by induction the monotonic function
[|t|]P (X1 , . . . , Xn) : P(S)n → P(S).
Note: if t is closed then [|t|]P () ⊆ S.

if t = true (resp false) then [|t|]P (E1 , . . . , En) = S (resp. ∅)
if t = Xi then [|t|]P (E1, . . . , En) = Ei

if t = t1 ∨ t2(resp. ∧) then
[|t|]P (E1, . . . , En) = [|t1 |]P (E1, . . . , En) ∪ [|t2 |]P (E1, . . . , En) (resp. ∩)
if t = 〈a〉t ′ (resp [a]) then [|t|](E1 , . . . , En) = 〈a〉P([|t ′ |]P(E1, . . . , En)) (resp.
[a]P )
if t = θX.t ′ then [|t|]P (E1, . . . , En) = θX.[|t ′ |]P(X, E1 , . . . , En).
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Parity automata and µ-calculus

Proposition For any automaton A there exists a µ-term tA such that for any P,
[|A|]P = [|tA|]().
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Parity automata and µ-calculus

Proposition For any automaton A there exists a µ-term tA such that for any P,
[|A|]P = [|tA|]().
Let ti = ∆(qi) and fi(X1 , . . . Xn) = [|ti |]P (X1 , . . . , Xn)

Σ(A)






X1
θ1= t1

X2
θ2= t2

...
Xn

θn= tn

Σ(A, P)






X1
θ1= f1(X1 , . . . , Xn)

X2
θ2= f2(X1 , . . . , Xn)

...
Xn

θn= fn(X1 , . . . , Xn)
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37

Parity automata and µ-calculus

Proposition For any automaton A there exists a µ-term tA such that for any P,
[|A|]P = [|tA|]().
Let ti = ∆(qi) and fi(X1 , . . . Xn) = [|ti |]P (X1 , . . . , Xn)

Σ(A)






X1
θ1= t1

X2
θ2= t2

...
Xn

θn= tn

Σ(A, P)






X1
θ1= f1(X1 , . . . , Xn)

X2
θ2= f2(X1 , . . . , Xn)

...
Xn

θn= fn(X1 , . . . , Xn)

t ′
1 = θ1X1 .t1 g1(X2, . . . , Xn) = θ1X1 .f1(X1 , . . . , Xn) = [|t ′

1 |]P(X2 , . . . , Xn)
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37

Parity automata and µ-calculus

Proposition For any automaton A there exists a µ-term tA such that for any P,
[|A|]P = [|tA|]().
Let ti = ∆(qi) and fi(X1 , . . . Xn) = [|ti |]P (X1 , . . . , Xn)

Σ(A)






X1
θ1= t1

X2
θ2= t2

...
Xn

θn= tn

Σ(A, P)






X1
θ1= f1(X1 , . . . , Xn)

X2
θ2= f2(X1 , . . . , Xn)

...
Xn

θn= fn(X1 , . . . , Xn)

t ′
1 = θ1X1 .t1 g1(X2, . . . , Xn) = θ1X1 .f1(X1 , . . . , Xn) = [|t ′

1 |]P(X2 , . . . , Xn)

Σ ′(A)






X2
θ2= t2 [X1 := t ′

1 ]

...
Xn

θn= tn [X1 := t ′
1 ]

Σ ′(A, P)






X2
θ2= f2(g1(X2, . . . , Xn), X2 , . . . , Xn)

...
Xn

θn= fn(g1(X2, . . . , Xn), X2 , . . . , Xn)
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And vice-versa

Proposition For any closed term t there exists an automaton At such that
[|t|]P () = [|At |]P for any P.
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And vice-versa

Proposition For any closed term t there exists an automaton At such that
[|t|]P () = [|At |]P for any P.

An incomplete automaton is an automaton containing some states (say
q1, . . . , qk) for which ρ and ∆ are not defined. (Obviously, q! must be defined.)
The “syntactic” solution of Σ(A) contains the free variables X1 , . . . , Xk . Thus
[|A|]P (X1 , . . . , Xk) is a mapping from P(S)k → P(S).
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38

And vice-versa

Proposition For any closed term t there exists an automaton At such that
[|t|]P () = [|At |]P for any P.

Lemma For any term t whose free variables are X1 , . . . , Xk , there is an incomplete
automaton A with undefined states q1, . . . , qk , such that for any P,
[|A|]P (X1 , . . . , Xk) = [|t|]P (X1 , . . . , Xk).
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38

And vice-versa

Proposition For any closed term t there exists an automaton At such that
[|t|]P () = [|At |]P for any P.

Lemma For any term t whose free variables are X1 , . . . , Xk , there is an incomplete
automaton A with undefined states q1, . . . , qk , such that for any P,
[|A|]P (X1 , . . . , Xk) = [|t|]P (X1 , . . . , Xk).

Proof by induction. Let A(i) be “equivalent” to ti(X
(i)
1 , . . . , X

(i)
ki

).

The automaton equivalent to µX
(i)
1 .t1 is obtained by taking q

(i)
1 as initial

state and defining it by ρ(q
(i)
1 ) equal to any odd number greater than

ρ(q
(i)
k+1), . . . , ρ(q

(i)
k+n), and ∆(q

(i)
1 ) = { {q

(i)
! } }.

The automaton equivalent to t1 ∨ t2 (resp. t1 ∧ t2) is obtained by adding to
the “disjoint” union of A(1) and A(2) the new initial state q! of rank 0 defined
by ∆(q!) = { {q

(1)
! }, {q

(2)
! } } (resp. ∆(q!) = { {q

(1)
! , q

(2)
! } })
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MSOL-definability

Basic predicates Va(x, y): Va(s, s ′) is true in P if (s, a, s ′) ∈ T
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MSOL-definability

Basic predicates Va(x, y): Va(s, s ′) is true in P if (s, a, s ′) ∈ T

Proposition For any µ- term t, whose free variables are {X1 , . . . , Xn}, there
exists a formula Ft(z, X1 , . . . , Xn) in MSOL such that Ft(s, E1, . . . , En) is true in P

iff s ∈ [|t|]P (E1, . . . , En)
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39

MSOL-definability

Basic predicates Va(x, y): Va(s, s ′) is true in P if (s, a, s ′) ∈ T

Proposition For any µ- term t, whose free variables are {X1 , . . . , Xn}, there
exists a formula Ft(z, X1 , . . . , Xn) in MSOL such that Ft(s, E1, . . . , En) is true in P

iff s ∈ [|t|]P (E1, . . . , En)

Let Gt(Z, X1 , . . . , Xn) be equal to ∀z ∈ Z, Ft(z, X1 , . . . , Xn)

(so that Gt(E, E1 , . . . En) true in P iff E = [|t|]P (E1, . . . , En))
if t = 〈a〉X then Ft(z, X) = ∃x ∈ X : Va(z, x)

if t = µX1.t ′ then Ft(z, X2 , . . . , Xn) =

∃Z : z ∈ Z ∧ Gt ′(Z, Z, X2 , . . . , Xn) ∧ ∀X(Gt ′(X, X, X2 , . . . , Xn) ⇒ Z ⊆ X).
etc.
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And the converse

is false
F(X) = ∀x(x ∈ X =⇒ Va(x, x))

In P1 = (s!

a
→ s!), F(E) is true iff E = {s!}

In P2 = (s!

a
→ s

a
→ s!), F(E) is true iff E = ∅
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40

And the converse

is false
F(X) = ∀x(x ∈ X =⇒ Va(x, x))

In P1 = (s!

a
→ s!), F(E) is true iff E = {s!}

In P2 = (s!

a
→ s

a
→ s!), F(E) is true iff E = ∅

For any closed µ-term t, [|t|]P1
= ∅ iff [|t|]P2

= ∅
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40

And the converse

is false
F(X) = ∀x(x ∈ X =⇒ Va(x, x))

In P1 = (s!

a
→ s!), F(E) is true iff E = {s!}

In P2 = (s!

a
→ s

a
→ s!), F(E) is true iff E = ∅

For any closed µ-term t, [|t|]P1
= ∅ iff [|t|]P2

= ∅

For any subset E of S1 = {s!}, let E ′ be the subset of S2 = {s!, s} such that E ′ = ∅
if E = ∅ and E ′ = S2 if E = S1 .
Then for any t, E = [|t|]P1

(E1, . . . , En) iff E ′ = [|t|]P2
(E ′

1, . . . , E ′
n).
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40

And the converse

is false
F(X) = ∀x(x ∈ X =⇒ Va(x, x))

In P1 = (s!

a
→ s!), F(E) is true iff E = {s!}

In P2 = (s!

a
→ s

a
→ s!), F(E) is true iff E = ∅

For any closed µ-term t, [|t|]P1
= ∅ iff [|t|]P2

= ∅

Inductive proof of: For any t, E = [|t|]P1
(E1, . . . , En) iff E ′ = [|t|]P2

(E ′
1 , . . . , E ′

n).
〈a〉P1

(∅) = 〈a〉P2
(∅) = [a]P1

(∅) = [a]P2
(∅) = ∅

〈a〉P1
(S1) = [a]P1

(S1) = S1 , 〈a〉P2
(S2) = [a]P2

(S2) = S2

Let t = µX1 .t ′, let fi(X1 , X2) = [|t ′|]Pi
(X1 , X2) and gi(X2) = [|t|]Pi

(X2).
Let E1 = g1(E2) = f1(E1, E2).

If E1 = ∅ = f1(∅, E2) then ∅ = f2(∅, E ′
2) hence and g2(E ′

2) = ∅ = E ′
1.

If E1 = S1 then f1(∅, E2) = S1, hence
S2 = f2(∅, E ′

2) ⊆ f2(g2(E ′
2), E ′

2) = g2(E ′
2), hence g2(E ′

2) = S2 = E ′
1 .
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Bisimulation

A bisimulation between P and P ′ is a relation R ⊆ S × S ′ such that
R(s!, s ′

!)

If R(s, s ′) then
∀(s, a, s1) ∈ T, ∃(s ′, a, s ′

1) ∈ T ′ : R(s1, s ′
1),

∀(s ′, a, s ′
1) ∈ T ′, ∃(s, a, s1) ∈ T : R(s1, s ′

1),
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41

Bisimulation

A bisimulation between P and P ′ is a relation R ⊆ S × S ′ such that
R(s!, s ′

!)

If R(s, s ′) then
∀(s, a, s1) ∈ T, ∃(s ′, a, s ′

1) ∈ T ′ : R(s1, s ′
1),

∀(s ′, a, s ′
1) ∈ T ′, ∃(s, a, s1) ∈ T : R(s1, s ′

1),

R = {(s!, s!), (s!, s)} is a bisimulation between P1 = (s!

a
→ s!) and

P2 = (s!

a
→ s

a
→ s!).

MOVEP 2006 Bordeaux, june 2006



41

Bisimulation

A bisimulation between P and P ′ is a relation R ⊆ S × S ′ such that
R(s!, s ′

!)

If R(s, s ′) then
∀(s, a, s1) ∈ T, ∃(s ′, a, s ′

1) ∈ T ′ : R(s1, s ′
1),

∀(s ′, a, s ′
1) ∈ T ′, ∃(s, a, s1) ∈ T : R(s1, s ′

1),

R = {(s!, s!), (s!, s)} is a bisimulation between P1 = (s!

a
→ s!) and

P2 = (s!

a
→ s

a
→ s!).

Fact
If R is a bisimulation between P and P ′ then R−1 is a bisimulation between
P ′and P.
If R is a bisimulation between P and P ′, and if R ′ is a bisimulation between P ′

and P ′′, then R ◦ R ′ is a bisimulation between P and P ′′
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Saturated sets

Let R be a bisimulation between P and P ′. A subset E of S is R-saturated if
R−1(R(E)) = E. (i.e. if R(s1 , s ′) and R(s2, s ′) then s1 ∈ E ⇔ s2 ∈ E).
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Saturated sets

Let R be a bisimulation between P and P ′. A subset E of S is R-saturated if
R−1(R(E)) = E. (i.e. if R(s1 , s ′) and R(s2, s ′) then s1 ∈ E ⇔ s2 ∈ E).

Fact

If E is R-saturated then R(E) is R−1-saturated.
∅ and S are R-saturated.
if E1 and E2 are R-saturated then E1 ∪ E2 , E1 ∩ E2, and S − E1 are
R-saturated.
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Bisimulation invariance

Proposition Let P and P ′. If there is a bisimulation between P and P ′ then for any
(closed) automaton A, P |= A ↔ P ′ |= A.

Lemma Let R be a bisimulation between P and P ′.
For any µ-term t and any R-saturated subsets E1, . . . , En ,

the set E = [|t|]P (E1, . . . , En) is R-saturated.
R(E) = [|t|]P ′(R(E1), . . . , R(En)).

Corollary [|A|]P is R-saturated and [|A|]P ′ = R([|A|]P ) hence [|A|]P = R−1([|A|]P ′).
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Infinite transitions systems

All the previous definitions ([|A|]P , [|t|]P (X1 , . . . , Xn), bisimulation) and results
(parity automata ⇔ µ-terms ⇒ MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.
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Infinite transitions systems

All the previous definitions ([|A|]P , [|t|]P (X1 , . . . , Xn), bisimulation) and results
(parity automata ⇔ µ-terms ⇒ MSOL formulas, bisimulation invariance) are still
valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model (∃P : P |= A) then it has a finite model.

Fact MSOL has NOT the finite model property.

V(x, y) =
W

a∈A Va(x, y), F = ∀x, ∃y : V(x, y) ∧ ∀y((∃x : V(x, y)) ⇒

∀x, x ′, (V(x, y) ∧ V(x ′, y) ⇒ x = x ′))

(i.e. each state is of indegree at most 1)

F is true in P iff P is an infinite tree.
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MSOL and bisimulation invariance

A MSOL-formula F(x) with one free variable is bisimulation-invariant if

for any P, P ′, any bisimulation R between P and P ′ and any (s, s ′) ∈ R one has:
F(s) is true in P iff F(s ′) is true in P ′
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MSOL and bisimulation invariance

A MSOL-formula F(x) with one free variable is bisimulation-invariant if

for any P, P ′, any bisimulation R between P and P ′ and any (s, s ′) ∈ R one has:
F(s) is true in P iff F(s ′) is true in P ′

Theorem [Janin-Walukiewicz, 1996]

If F(x) is bisimulation-invariant then there exists A such that for any P and s,
F(s) is true in P iff s ∈ [|A|]P .
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Satisfiability and the problem of conjunction

A closed µ-term t is satisfiable (denoted by |= t) if there is a P such that P |= t (i.e.
s! ∈ [|t|]P )

Fact |= t iff ∃P : [|t|]P += ∅ (One can take any state in [|t|]P as initial state)
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s! ∈ [|t|]P )

Fact |= t iff ∃P : [|t|]P += ∅ (One can take any state in [|t|]P as initial state)

Let t and t ′ be two closed terms.
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Satisfiability and the problem of conjunction

A closed µ-term t is satisfiable (denoted by |= t) if there is a P such that P |= t (i.e.
s! ∈ [|t|]P )

Fact |= t iff ∃P : [|t|]P += ∅ (One can take any state in [|t|]P as initial state)

Let t and t ′ be two closed terms.
|= t ∨ t ′ iff |= t or |= t ′ (because [|t ∨ t ′|]P = [|t|]P ∨ [|t ′|]P )
|= t ∧ t ′ implies |= t yet |= t ′

The converse is not always true:

|= 〈a〉true and |= [a]false but +|= 〈a〉true ∧ [a]false
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Satisfiability and the problem of conjunction

A closed µ-term t is satisfiable (denoted by |= t) if there is a P such that P |= t (i.e.
s! ∈ [|t|]P )

Fact |= t iff ∃P : [|t|]P += ∅ (One can take any state in [|t|]P as initial state)

Let t and t ′ be two closed terms.
|= t ∨ t ′ iff |= t or |= t ′ (because [|t ∨ t ′|]P = [|t|]P ∨ [|t ′|]P )
|= t ∧ t ′ implies |= t yet |= t ′

The converse is not always true:

|= 〈a〉true and |= [a]false but +|= 〈a〉true ∧ [a]false

and not always false:

|= 〈a〉true and |= [b]false but |= 〈a〉true ∧ [b]false
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Guarded µ-terms

Some conjunction are problematic (〈a〉true ∧ [a]false),
some are not problematic (〈a〉true ∧ [a]false)
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Guarded µ-terms

Some conjunction are problematic (〈a〉true ∧ [a]false),
some are not problematic (〈a〉true ∧ [a]false)

But some are of unknown status: νX.t(µY.(X∧t ′(X, Y)))

A µ-term is guarded if each occurrence of a variable X appears in a subterm 〈a〉X
or [a]X

Theorem Each µ-term is (effectively) equivalent to a guarded one

Corollary Each automaton is equivalent to a guarded automaton A

i.e. where ∆ : Q → P(C) where C = P({〈a〉q, [a]q | a ∈ A, q ∈ Q}) instead of
C = P(Q∪{〈a〉q, [a]q | a ∈ A, q ∈ Q})
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Simulation Theorem

Elimination (in a guarded automaton) of all problematic conjunctions

(powerset construction + histories + MacNaughton)
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Simulation Theorem

Elimination (in a guarded automaton) of all problematic conjunctions

(powerset construction + histories + MacNaughton)

Theorem [Janin-Walukiewicz, 1995]

Every automaton is equivalent to an automaton A such that any conjunction
c ∈ ∆(q) has the form

V
a∈A〈a〉q1 ∧ · · · ∧ 〈a〉qn ∧ [a](q1 ∨ · · · ∨ qn)
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