Logics, automata, and behavioural properties of discrete event systems

André Arnold

WHAT

- Definition of a (finite) discrete event system P
- \blacksquare Definition of a finite or infinite object Beh(P) representing the "behaviour" of P
- \blacksquare Definition of a logic $\mathcal L$ whose formulas F express properties of Beh(P)

WHAT

- Definition of a (finite) discrete event system P
- \blacksquare Definition of a finite or infinite object Beh(P) representing the "behaviour" of P
- Definition of a logic \mathcal{L} whose formulas F express properties of Beh(P)

Several possibilities for each definition

WHY

Depending on the choice of ${\tt Beh}$ and ${\cal L}$

- Model-checking Given P and F in \mathcal{L} , does Beh(P) has property F? (complexity)
- Satisfiability Given F, does there exist P such Beh(P) has property F? (decidability, complexity)
- Synthesis Given F, find a P such Beh(P) has property F (if any) (complexity)

HOW

- I. Logics for linear behaviour
- II. Logics for branching behaviour

Transition systems

Let A be a set of events, and A be a set of labels

A transition system (or discrete event systems) is a tuple $P=\langle S,s_{\star},T,\lambda\rangle$ where

- S is a finite set of states
- $s_{\star} \in S$ is the initial state
- $\blacksquare \ T \subseteq S \times A \times S$ is the set of transitions
- $\blacksquare \ \lambda: S \to \Lambda \text{ is a labelling mapping}$

Transition systems

Let A be a set of events, and A be a set of labels

A transition system (or discrete event systems) is a tuple $P=\langle S,s_{\star},T,\lambda\rangle$ where

- S is a finite set of states
- $\blacksquare \ s_{\star} \in S$ is the initial state
- $\blacksquare \ T \subseteq S \times A \times S$ is the set of transitions
- $\blacksquare \ \lambda: S \to \Lambda \text{ is a labelling mapping}$

Remark Usually, $\Lambda = \mathcal{P}(\text{Prop})$ for some set Prop of local properties (possibly empty!), but nothing forbids $\Lambda = S$ and $\lambda = id_S$.

Part I

Linear behaviour

A path of $P = \langle S, s_{\star}, T, \lambda \rangle$ is an *infinite* sequence $s_0 a_0 s_1 a_1 \cdots s_n a_n s_{n+1} a_{n+1} \cdots$ (with $s_i \in S$ and $a_i \in A$) such that

- $\blacksquare s_0 = s_\star,$
- $\exists \forall n \in \mathbb{N}, (s_n, a_n, s_{n+1}) \in \mathsf{T}$

The trace of the path $s_0 a_0 s_1 a_1 \cdots s_n a_n s_{n+1} a_{n+1} \cdots$ is the sequence

- \square $a_0a_1 \cdots a_na_{n+1} \cdots \in A^{\omega}$ (event trace)
- $\label{eq:constraint} \lambda(s_0)\lambda(s_1)\cdots\lambda(s_n)\lambda(s_{n+1})\cdots\in\Lambda^\omega \mbox{ (label trace)}$
- $\ \, \square \ \, (\lambda(s_0), a_0)(\lambda(s_1), a_1) \cdots (\lambda(s_n), a_n)(\lambda(s_{n+1}), a_{n+1}) \cdots \in (\Lambda \times A)^{\omega} \ \, \text{(full trace)}$

Linear behaviour

A path of $P = \langle S, s_{\star}, T, \lambda \rangle$ is an *infinite* sequence $s_0 a_0 s_1 a_1 \cdots s_n a_n s_{n+1} a_{n+1} \cdots$ (with $s_i \in S$ and $a_i \in A$) such that

- $\blacksquare s_0 = s_\star,$
- $\exists \forall n \in \mathbb{N}, (s_n, a_n, s_{n+1}) \in \mathsf{T}$

The trace of the path $s_0 a_0 s_1 a_1 \cdots s_n a_n s_{n+1} a_{n+1} \cdots$ is the sequence

$$\square a_0a_1 \cdots a_na_{n+1} \cdots \in A^{\omega}$$
 (event trace)

- $\label{eq:label_linear} \begin{tabular}{ll} \begin{tabular}{ll}$

Given a type of trace, Beh(P) is the set of traces of all paths in P

Unlabelling states

Without loss of generality, we may consider only event traces of state-unlabelled transition systems.

$$P = \langle S, s_{\star}, T, \lambda \rangle \text{ over } A \text{ and } \Lambda \quad \rightarrow \qquad P' = \langle S, s_{\star}, T', \lambda' \rangle \text{ over } B \text{ and } \mathcal{P}(\emptyset)$$

where

label trace

■ B =
$$\Lambda$$

■ T' = {(s, $\lambda(s), s'$) | $\exists a \in A : (s, a, s') \in T$ }

full trace

■ B =
$$\Lambda \times A$$

■ T' = {(s, (λ (s), α), s') | (s, α , s') \in T}

Specifications

Beh(P) is a subset of B^{ω} where $B = A, \Lambda, \Lambda \times A$ according to the type of trace.

Specifications

Beh(P) is a subset of B^{ω} where $B = A, A, A \times A$ according to the type of trace.

A specification ${\rm Spec}$ is a subset of ${\rm B}^\omega$

Beh(P) satisfies Spec iff Beh(P) \subseteq Spec iff Beh(P) $\cap (B^{\omega} - Spec) = \emptyset$.

Bordeaux, june 2006

Specifications

Beh(P) is a subset of B^{ω} where $B = A, \Lambda, \Lambda \times A$ according to the type of trace.

A specification ${\rm Spec}$ is a subset of ${\rm B}^\omega$

Beh(P) satisfies Spec

iff
$$Beh(P) \subseteq Spec$$

iff $Beh(P) \cap (B^{\omega} - Spec) = \emptyset$.

 \Rightarrow Definition of subsets of $B^{\,\omega}$

Büchi automata

A Büchi automaton \mathcal{A} over A is a pair $(\langle Q, q_{\star}, \Delta \rangle, Q_F)$ where $\langle Q, q_{\star}, \Delta \rangle$ is an unlabelled transition system and Q_F is a subset of Q.

An infinite word $u = a_0 a_1 \cdots$ is recognized by \mathcal{A} if it is the trace of an accepting path $\pi = q_* a_0 q_1 a_1 q_2 \cdots$, i.e., which contains infinitely many q_i in Q_F .

 $L(\mathcal{A}) \subseteq A^{\omega}$ is the set of all words recognized by \mathcal{A} .

Recognizable sets

A set $L \subseteq A^{\omega}$ is recognizable if there is a \mathcal{A} such that $L = L(\mathcal{A})$.

Closure properties

- If L and L' are recognizable subsets of A^{ω} then $L \cup L'$ and $L \cap L'$ are recognizable.
- If L is recognizable then $B^{\omega} L$ is recognizable.
- Let $\pi : A \to B$. Let $\pi(L) = \{\pi(a_0)\pi(a_1)\cdots \mid a_0a_1\cdots \in L\} \subseteq B^{\omega}$. If L is recognizable then $\pi(L)$ is recognizable.

Recognizable sets

A set $L \subseteq A^{\omega}$ is recognizable if there is a \mathcal{A} such that $L = L(\mathcal{A})$.

Closure properties

- If L and L' are recognizable subsets of A^{ω} then $L \cup L'$ and $L \cap L'$ are recognizable.
- If L is recognizable then $B^{\omega} L$ is recognizable.
- Let $\pi : A \to B$. Let $\pi(L) = \{\pi(a_0)\pi(a_1)\cdots \mid a_0a_1\cdots \in L\} \subseteq B^{\omega}$. If L is recognizable then $\pi(L)$ is recognizable.

Proof

If L = L(A) [and L' = L(A')] one can construct A'' such that L(A'') is equal to what is needed.

Satisfiability and model-checking

Proposition

 $L(\mathcal{A})$ is not empty iff \mathcal{A} contains a state q_1 reachable from q_* and a cycle $q_1 a_1 q_2 \cdots q_n a_n q_1$ which contains a state $q_j \in Q_F$.

Decidable in linear time (Tarjan's algorithm for strongly connected components)

Satisfiability and model-checking

Proposition

 $L(\mathcal{A})$ is not empty iff \mathcal{A} contains a state q_1 reachable from q_* and a cycle $q_1 a_1 q_2 \cdots q_n a_n q_1$ which contains a state $q_j \in Q_F$.

Decidable in linear time (Tarjan's algorithm for strongly connected components)

Beh(P) \cap L(A) is recognized by the automaton $\mathcal{B} = (\langle S \times Q, (s_*, q_*), \Gamma \rangle, S \times Q_F)$ where

 $((s,q), a, (s',q')) \in \Gamma$ iff $(s, a, s') \in T$ and $(q, a, q') \in \Delta$.

Deterministic automata

For any state q, $\Delta(q)$ contains at most one state.

Deterministic automata

For any state q, $\Delta(q)$ contains at most one state.

Not every recognizable language is recognized by a deterministic Büchi automaton

Deterministic automata

For any state q, $\Delta(q)$ contains at most one state.

Not every recognizable language is recognized by a deterministic Büchi automaton

counter example

Let $L = \{a, b\}^* a^{\omega}$. Let us assume that \mathcal{A} is a deterministic Büchi automaton with n states which recognizes L.

For any (reachable) state q there exist a state q' and a state $q'' \in Q_F$ such that

$$q \xrightarrow{a^m} q' \xrightarrow{a^i} q'' \xrightarrow{a^j} q'$$
 with $m + i + j = n$.

It follows that the unique path for $(a^n b)\omega$ is accepting.

Other kinds of automata

Let $P = \langle Q, q_*, \Delta \rangle$ be a transition system and let $\pi = q_* a_0 q_1 a_1 q_2 \cdots$ be a path. Let $Inf(\pi)$ be the set of all states ocuring infinitely often in π .

<u>Büchi automaton</u> (P, F) where $F \subseteq Q$. π is accepting if $Inf(\pi) \cap F$ not empty

<u>Muller automaton</u> (P, \mathcal{F}) where $\mathcal{F} \subseteq \mathcal{P}(Q)$. π is accepting if $Inf(\pi) \in \mathcal{F}$.

Parity automaton(P, ρ) where $\rho : Q \to \mathbb{N}$. π is accepting if max{ $\rho(q) \mid q \in Inf(\pi)$ } is even.

Other kinds of automata

Let $P = \langle Q, q_*, \Delta \rangle$ be a transition system and let $\pi = q_* a_0 q_1 a_1 q_2 \cdots$ be a path. Let $Inf(\pi)$ be the set of all states ocuring infinitely often in π .

<u>Büchi automaton</u> (P, F) where $F \subseteq Q$. π is accepting if $Inf(\pi) \cap F$ not empty <u>Muller automaton</u> (P, \mathcal{F}) where $\mathcal{F} \subseteq \mathcal{P}(Q)$. π is accepting if $Inf(\pi) \in \mathcal{F}$. <u>Parity automaton</u>(P, ρ) where $\rho : Q \to \mathbb{N}$. π is accepting if max{ $\rho(q) \mid q \in Inf(\pi)$ } is even.

Büchi to parity:
$$\rho(q) = \begin{cases} 2 & \text{if } q \in F \\ 1 & \text{otherwise} \end{cases}$$

Determinisation of automata

<u>Theorem</u>[McNaughton, 1966] and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a deterministic parity automaton.

Determinisation of automata

<u>Theorem[McNaughton, 1966]</u> and many others since then.

Every recognizable set is recognized by a deterministic Muller automaton and by a deterministic parity automaton.

$$\begin{split} \underline{\text{Example}} \\ \overline{\text{Let } A} &= \{a_0, a_1, a_2\} \text{ and let } L = A^* a_0^{\omega} \cup (A^* a_2)^{\omega}. \\ Q &= \{q_0, q_1, q_2\}, \qquad q_\star = q_0, \qquad \rho(q_i) = i. \\ \forall i, j, \Delta(q_i, a_j) &= \{q_j\}. \end{split}$$

From automata to logic

Let \mathcal{A} = $(\langle Q, q_{\star}, \Delta \rangle, Q_F)$ be a Büchi automaton and let $\mathfrak{u} \in A^{\omega}$ seen as a mapping $\mathfrak{u} : \mathbb{N} \to A$ (i.e., $\mathfrak{u} = \mathfrak{u}(0)\mathfrak{u}(1)\cdots\mathfrak{u}(n)\cdots$).

u is recognized by $\mathcal A$ iff with each $q\in Q$ is associated a subset E_q of $\mathbb N$ such that

- \blacksquare these subsets form a partition of $\mathbb N,$ more precisely
 - they are pairwise disjoint: $\forall q, q' \in Q, q \neq q' \Rightarrow E_q \cap E_{q'} = \emptyset$
 - \blacksquare they cover $\mathbb{N} \colon \mathbb{N} \subseteq \bigcup_{q \in Q} E_q$
- $\blacksquare \ 0 \in E_{q_{\star}}$
- I for any $n \in \mathbb{N}$ there exists $(q, a, q') \in \Delta$ such that $n \in E_q$, u(n) = a, and $n + 1 \in E_{q'}$
- If there exists $q \in Q_F$ such that E_q is infinite (i.e., $\forall n \in \mathbb{N}, \exists m \in E_q : n \leq m$)

From automata to logic

Let \mathcal{A} = $(\langle Q, q_{\star}, \Delta \rangle, Q_F)$ be a Büchi automaton and let $\mathfrak{u} \in A^{\omega}$ seen as a mapping $\mathfrak{u} : \mathbb{N} \to A$ (i.e., $\mathfrak{u} = \mathfrak{u}(0)\mathfrak{u}(1)\cdots\mathfrak{u}(n)\cdots$).

u is recognized by $\mathcal A$ iff with each $q\in Q$ is associated a subset E_q of $\mathbb N$ such that

- \blacksquare these subsets form a partition of $\mathbb N,$ more precisely
 - they are pairwise disjoint: $\forall q, q' \in Q, q \neq q' \Rightarrow E_q \cap E_{q'} = \emptyset$
 - \blacksquare they cover $\mathbb{N} \colon \mathbb{N} \subseteq \bigcup_{q \in Q} E_q$
- $\blacksquare \ 0 \in E_{q_\star}$
- I for any $n \in \mathbb{N}$ there exists $(q, a, q') \in \Delta$ such that $n \in E_q$, u(n) = a, and $n + 1 \in E_{q'}$
- there exists $q \in Q_F$ such that E_q is infinite (i.e., $\forall n \in \mathbb{N}, \exists m \in E_q : n \leq m$)

<u>Trivia</u> $n + 1 \in E$ iff $\exists m \in E : n \leq m$ and $\forall k \in \mathbb{N}(k \leq n \text{ or } m \leq k)$

 $0 \in E \text{ iff } \exists m \in E : \forall k \in \mathbb{N}, m \leq k$

16

Monadic second order logic

Let Var_0 be a set of individual variables and Var_1 be a set of set variables. For each $a \in A$ let V_a be a unary predicate. The formulas are defined inductively by

- $V_a(x)$ with $x \in Var_0$ and $a \in A$
- $x \leq y, x \in X$ with $x, y \in Var_0$ and $X \in Var_1$,
- $F \lor F'$, $F \land F'$, $\neg F$, with F and F' are formulas.
- $\exists xF$, $\forall xF$, $\exists XF$, $\forall XF$, with $x \in Var_0$, $X \in Var_1$, and F a formula.

Monadic second order logic

Let Var_0 be a set of individual variables and Var_1 be a set of set variables. For each $a \in A$ let V_a be a unary predicate. The formulas are defined inductively by

• $V_{\alpha}(x)$ with $x \in Var_0$ and $\alpha \in A$

- $\blacksquare x \leq y, x \in X \text{ with } x, y \in Var_0 \text{ and } X \in Var_1$,
- $F \lor F'$, $F \land F'$, $\neg F$, with F and F' are formulas.

■ $\exists xF$, $\forall xF$, $\exists XF$, $\forall XF$, with $x \in Var_0$, $X \in Var_1$, and F a formula.

Let F(x, x', ..., X, X', ...) be a formula whose free variables are

 x, x', \ldots (individual) and X, X', \ldots (set). Let u be a word.

Let n, n', \ldots (resp., E, E', \ldots) be natural numbers (resp. sets) associated with the free individual (resp. set) variables of F.

We define (by induction) the satisfaction relation $u \models F(n, n', ..., E, E', ...)$ which means that F(n, n', ..., E, E'...) is true in u by

$$\square$$
 $\mathfrak{u} \models V_{\mathfrak{a}}(\mathfrak{n})$ iff $\mathfrak{u}(\mathfrak{n}) = \mathfrak{a}$

straightforward!

MSOL definability

A set $L\subseteq A^{\omega}$ is MSOL-definable if there is a closed formula F such that $L=\{u\mid u\models F\}$

<u>Theorem</u>[Büchi, 1960] A set L is recognizable iff it is MSOL definable.

Proof

 \Rightarrow see above

 \Leftarrow by induction, using the closure properties given above

First-order definabiliy

Every FOL-definable language is MSOL-definable.

The converse is not true! Example $\{u \in \{a, b\}^{\omega} \mid u(n) = a \Rightarrow n \text{ is even}\}.$

Theorem[Kamp, 1968]

A language is FOL-definable iff it is LTL-definable

LTL

$$F ::= true|false|a|\neg a|b|\neg b| \cdots |$$
$$F \lor F|F \land F|\neg F|$$
$$\mathcal{N}F|\mathcal{A}F|F\mathcal{U}F$$

Definition of $u \models F$. Let u[i] be the suffix $u(i)u(i+1)\cdots$ of u.

$$\square$$
 u \models true, u $\not\models$ false

$$\square$$
 $\mathfrak{u} \models \mathfrak{a}$ iff $\mathfrak{u}(\mathfrak{0}) = \mathfrak{a}$.

- □ $u \models F \lor F'$ (resp. \land) iff $u \models F$ or (resp. and) $u \models F'$
- $\blacksquare u \models \mathcal{N}F \text{ iff } u[1] \models F,$
- $\square u \models \mathcal{A}F \text{ iff } \forall i, u[i] \models F,$
- \blacksquare $\mathfrak{u}\models\mathsf{F}\mathcal{U}\mathsf{F}'$ iff there exists $\mathfrak i$ such that

```
\blacksquare u[i] \models F' \text{ and } \forall j, 0 \leq j < i \Rightarrow u[j] \models F
```

Duality

Extension of De Morgan's law

$$\blacksquare \neg \mathcal{N} F \equiv \mathcal{N} \neg F$$

- $\blacksquare \neg \mathcal{A}F \equiv \text{true}\,\mathcal{U}\neg F$
- $\Box \neg (F \mathcal{U} F') \equiv (\mathcal{A} \neg F') \quad \lor \quad (\neg F') \mathcal{U} (\neg F \land \neg F')$

LTL to FOL

By induction on F in LTL : there exists $\widehat{F}(\mathbf{x})$ in FOL such that

 $\forall i, (u[i] \models F \Leftrightarrow u \models \widehat{F}(i))$

- $\blacksquare \ \widehat{a} = V_a(x),$
- $\square \widehat{\mathcal{N}F} = \widehat{F}(x+1),$
- $\label{eq:F} \square \ \widehat{\mathcal{A}F} = \forall \mathtt{y}, (\mathtt{x} \leq \mathtt{y} \Rightarrow \widehat{F}(\mathtt{y})),$
- $\label{eq:Full_states} \square \ \widehat{\mathsf{F}\mathcal{U}\mathsf{F}'} = \exists \mathsf{y}: \quad \mathsf{x} \leq \mathsf{y} \land \widehat{\mathsf{F}'}(\mathsf{y}) \land \forall z(\mathsf{x} \geq z < \mathsf{y} \Rightarrow \widehat{\mathsf{F}}(z)).$

Bordeaux, june 2006

Fixed points in LTL

With a formula F we associate the defined language $\llbracket F \rrbracket = \{ u \mid u \models F \}$.

- [AF] is the greatest language L such that $L = [F] \cap AL$.
- $\llbracket F U F' \rrbracket$ is the least language L such that $L = \llbracket F' \rrbracket \cup (\llbracket F \rrbracket \cap AL)$.
Fixed points in LTL

With a formula F we associate the defined language $\llbracket F \rrbracket = \{ u \mid u \models F \}$.

- [AF] is the greatest language L such that $L = [F] \cap AL$.
- $\llbracket F U F' \rrbracket$ is the least language L such that $L = \llbracket F' \rrbracket \cup (\llbracket F \rrbracket \cap AL)$.

Notation

- $\blacksquare \ \llbracket \mathcal{A} F \rrbracket = \nu L.(\llbracket F \rrbracket \cap AL).$
- $\blacksquare \ \llbracket F \, \mathcal{U} F' \rrbracket = \mu L.(\llbracket F' \rrbracket \ \cup \ (\llbracket F \rrbracket \cap AL)).$

 $\begin{bmatrix} a \ \mathcal{U}b \end{bmatrix} = a^* b \{a, b\}^{\omega} \text{ is recognized by}$ $q_1 \xrightarrow{a} q_1, \quad q_1 \xrightarrow{b} q_2, \quad q_2 \xrightarrow{a} q_2, \quad q_2 \xrightarrow{b} q_2,$

$$\begin{split} & \llbracket \mathcal{A}(a\,\mathcal{U}b) \rrbracket = (a^*b)^{\omega} \text{ is recognized by adding} \\ & q_0 \stackrel{a}{\to} q_0 \wedge q_1, \quad q_0 \stackrel{b}{\to} q_0 \wedge q_1, \qquad \text{with initial state } q_0 \wedge q_1. \end{split}$$

 $\begin{bmatrix} a \ \mathcal{U}b \end{bmatrix} = a^* b \{a, b\}^{\omega} \text{ is recognized by}$ $q_1 \xrightarrow{a} q_1, \quad q_1 \xrightarrow{b} q_2, \quad q_2 \xrightarrow{a} q_2, \quad q_2 \xrightarrow{b} q_2,$

$$\begin{split} & \llbracket \mathcal{A}(a\,\mathcal{U}b) \rrbracket = (a^*b)^{\omega} \text{ is recognized by adding} \\ & q_0 \stackrel{a}{\to} q_0 \wedge q_1, \quad q_0 \stackrel{b}{\to} q_0 \wedge q_1, \qquad \text{with initial state } q_0 \wedge q_1. \end{split}$$

How to get a nondeterministic automaton (possibly deterministic)

$$a (1) \xrightarrow{a, b} (2) a, b$$

$$\begin{split} \llbracket a \, \mathcal{U}b \rrbracket &= a^* b \{a, b\}^{\omega} \text{ is recognized by} \\ q_1 \stackrel{a}{\to} q_1, \quad q_1 \stackrel{b}{\to} q_2, \quad q_2 \stackrel{a}{\to} q_2, \quad q_2 \stackrel{b}{\to} q_2, \end{split}$$

$$\begin{split} & \llbracket \mathcal{A}(a\,\mathcal{U}b) \rrbracket = (a^*b)^{\omega} \text{ is recognized by adding} \\ & q_0 \stackrel{a}{\to} q_0 \wedge q_1, \quad q_0 \stackrel{b}{\to} q_0 \wedge q_1, \qquad \text{with initial state } q_0 \wedge q_1. \end{split}$$

The usual powerset construction does not work! $\{q_0, q_1\} \xrightarrow{a} \{q_0, q_1\}, \quad \{q_0, q_1\} \xrightarrow{b} \{q_0, q_1, q_2\}, \quad \{q_0, q_1, q_2\} \xrightarrow{a} \{q_0, q_1, q_2\}, \quad \{q_0, q_1, q_2\} \xrightarrow{b} \{q_0, q_1, q_2\},$

$$\begin{split} \llbracket a \, \mathcal{U}b \rrbracket &= a^* b \{a, b\}^{\omega} \text{ is recognized by} \\ q_1 \stackrel{a}{\to} q_1, \quad q_1 \stackrel{b}{\to} q_2, \quad q_2 \stackrel{a}{\to} q_2, \quad q_2 \stackrel{b}{\to} q_2, \end{split}$$

$$\begin{split} & \llbracket \mathcal{A}(a\,\mathcal{U}b) \rrbracket = (a^*b)^{\omega} \text{ is recognized by adding} \\ & q_0 \stackrel{a}{\to} q_0 \wedge q_1, \quad q_0 \stackrel{b}{\to} q_0 \wedge q_1, \qquad \text{with initial state } q_0 \wedge q_1. \end{split}$$

The usual powerset construction does not work! $\{q_0, q_1\} \xrightarrow{a} \{q_0, q_1\}, \quad \{q_0, q_1\} \xrightarrow{b} \{q_0, q_1, q_2\}, \quad \{q_0, q_1, q_2\} \xrightarrow{a} \{q_0, q_1, q_2\}, \quad \{q_0, q_1, q_2\} \xrightarrow{b} \{q_0, q_1, q_2\},$

If b^{ω} is recognized then ba^{ω} is recognized as well

Histories

Let \mathcal{R} be the set of binary relations over $\{q_0, q_1, q_2\}$. Example: $R = \begin{array}{c} q_2 \\ q_1 \\ q_0 \end{array} \begin{array}{c} q_2 \\ q_1 \\ q_0 \end{array} \begin{array}{c} q_2 \\ q_1 \\ q_0 \end{array}$

Let us define the language L on A $\times\,\mathcal{R}$ recognized by

$$q_{0} \vdash (a, \bigcirc) \rightarrow \{q_{0}, q_{1}\}, \quad q_{0} \vdash (b, \bigcirc) \rightarrow q_{0}, q_{1},$$

$$q_{1} \vdash (a, \bigcirc) \rightarrow q_{1}, \quad q_{1} \vdash (b, \frown) \rightarrow q_{2},$$

$$q_{2} \vdash (a, \bigcirc) \rightarrow q_{2}, \quad q_{2} \vdash (b, \bigcirc) \rightarrow q_{2},$$

$$\{q_{0}, q_{1}\} \vdash (a, \bigcirc) \rightarrow \{q_{0}, q_{1}\}, \quad \{q_{0}, q_{1}\} \vdash (b, \bigcirc) \rightarrow \{q_{0}, q_{1}, q_{2}\},$$

$$\{q_{0}, q_{1}, q_{2}\} \vdash (a, \bigcirc) \rightarrow \{q_{0}, q_{1}, q_{2}\}, \quad \{q_{0}, q_{1}, q_{2}\} \vdash (b, \bigcirc) \rightarrow \{q_{0}, q_{1}, q_{2}\},$$

where all states are accepting.

Accepting graphs

A graph $G = R_0 R_1 \dots \in \mathcal{R}^{\omega}$ is accepting if all its infinite paths satisfy the parity condition.

A word u is recognized by the previous alternating automata (i.e., is in $[\mathcal{A}(a \mathcal{U}b)] = (a^*b)^{\omega}$) if there is a word $u \times G \in L$ such that G is accepting.

Accepting graphs

A graph $G = R_0 R_1 \dots \in \mathcal{R}^{\omega}$ is accepting if all its infinite paths satisfy the parity condition.

A word \mathfrak{u} is recognized by the previous alternating automata (i.e., is in $[\mathcal{A}(\mathfrak{a}\mathcal{U}\mathfrak{b})] = (\mathfrak{a}^*\mathfrak{b})^{\omega}$) if there is a word $\mathfrak{u} \times G \in L$ such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating automaton.

26

Accepting graphs

A graph $G = R_0 R_1 \dots \in \mathcal{R}^{\omega}$ is accepting if all its infinite paths satisfy the parity condition.

A word \mathfrak{u} is recognized by the previous alternating automata (i.e., is in $[\mathcal{A}(\mathfrak{a}\mathcal{U}\mathfrak{b})] = (\mathfrak{a}^*\mathfrak{b})^{\omega}$) if there is a word $\mathfrak{u} \times G \in L$ such that G is accepting.

NB. This is indeed the formal definition of a word recognized by an alternating automaton.

By McNauhton's theorem the set \mathcal{G} of all accepting G is recognized by a deterministic parity automaton.

It follows that the language $\{(u,G) \mid (u,G) \in L, G \in \mathcal{G}\}$ is recognized by a parity

automaton (the product of the automata recognizing L and G).

Part II

have the same linear behaviour: $a\{b,c\}^\omega$

have the same linear behaviour: $a\{b,c\}^\omega$

A branching property In every state where b is firable, c is firable too.

have the same linear behaviour: $a\{b, c\}^{\omega}$

A branching property In every state where b is firable, c is firable too.

have the same linear behaviour: $a\{b,c\}^\omega$

A branching property In every state where b is firable, c is firable too.

A minimal deterministic transition system P is fully determined by its linear behaviour L(P). The above property can be expressed by

$$\forall \mathfrak{u} \in A^*, \quad (\exists w \in A^{\omega} : \mathfrak{u}\mathfrak{b}w \in L(P)) \Rightarrow (\exists w' \in A^{\omega} : \mathfrak{u}\mathfrak{c}w' \in L(P))$$

which has not the linear form $\forall u \in L(P), u \in Spec$

Transition systems and monotonic functions

Let $P = \langle S, s_{\star}, T \rangle$ be a state-unlabelled transition system.

Let $\mathcal{M}(S)$ be the set of all monotonic functions over $\mathcal{P}(S)$

Transition systems and monotonic functions

Let $P = \langle S, s_{\star}, T \rangle$ be a state-unlabelled transition system.

Let $\mathcal{M}(S)$ be the set of all monotonic functions over $\mathcal{P}(S)$

For every $a \in A$, $\mathcal{M}(S)$ contains the two functions $\langle a \rangle_P$ and $[a]_P$ from $\mathcal{P}(S)$ to $\mathcal{P}(S)$ defined by

- $\square [a]_{P}(E) = \{s \in S \mid \forall (s, a, s') \in T, s' \in E\}$

Duality: $S - \langle a \rangle_P(E) = [a]_P(S - E)$

Transition systems and monotonic functions

Let $P = \langle S, s_{\star}, T \rangle$ be a state-unlabelled transition system.

Let $\mathcal{M}(S)$ be the set of all monotonic functions over $\mathcal{P}(S)$

For every $a \in A$, $\mathcal{M}(S)$ contains the two functions $\langle a \rangle_P$ and $[a]_P$ from $\mathcal{P}(S)$ to $\mathcal{P}(S)$ defined by

- $\square [a]_{P}(E) = \{s \in S \mid \forall (s, a, s') \in T, s' \in E\}$

Duality: $S - \langle a \rangle_P(E) = [a]_P(S - E)$

Back to the exemple : $[b]_P(\emptyset) \cup (\langle b \rangle_P(S) \land \langle c \rangle_P(S)) = S$

29

Event CTL

Syntax

 $F ::= true|false|F \lor F|F \land F|$ $\langle a \rangle F|[a]F| \quad a \in A$ $\langle \mathcal{A}F \rangle |[\mathcal{A}F]| \langle F \mathcal{U}F \rangle |[F \mathcal{U}F]$

Event CTL

Syntax

$$= ::= true|false|F \lor F|F \land F|$$
$$\langle a \rangle F|[a]F| \quad a \in A$$
$$\langle \mathcal{A}F \rangle |[\mathcal{A}F]| \langle F \mathcal{U}F \rangle |[F \mathcal{U}F]$$

Event CTL

Syntax

$$F ::= true|false|F \lor F|F \land F|$$
$$\langle a \rangle F|[a]F| \quad a \in A$$
$$\langle \mathcal{A}F \rangle |[\mathcal{A}F]| \langle F \mathcal{U}F \rangle |[F \mathcal{U}F]$$

$$P \models F \text{ iff } s_\star \in \llbracket F \rrbracket_P$$

Example (and counter-example)

After an a, there will always be a b:

 $[a] false \lor \langle a \rangle [true \mathcal{U} \langle b \rangle true]$

Example (and counter-example)

After an a, there will always be a b: $[a]false \lor \langle a \rangle [true U \langle b \rangle true]$

After an a, there will always be infinitely many b's

Example (and counter-example)

After an a, there will always be a b: $[a]false \lor \langle a \rangle [true \mathcal{U} \langle b \rangle true]$

After an a, there will always be infinitely many b's

 $f(X,Y) = \langle b \rangle_{P}(Y) \cup \bigcap_{c \neq b} [c]_{P}(X)$

from $\mathcal{P}(S) \times \mathcal{P}(S)$ to $\mathcal{P}(S)$ in $\mathcal{M}(P)$,

 $g(Y) = \mu X.f(X, Y),$ $h = \nu Y.g(Y),$ $[a]_{P}(\emptyset) \cup \langle a \rangle_{P}(h)$

Modal parity automata

- $\mathcal{A} = \langle Q, q_\star, \Delta, \rho \rangle$ with
 - ${\scriptstyle \blacksquare} \ \rho: Q \rightarrow \mathbb{N}$
 - $\blacksquare \Delta: Q \to \mathcal{P}(\mathcal{C})$ where
 - $\blacksquare \ \mathcal{C} = \mathcal{P}(Q \cup \{ \langle \mathfrak{a} \rangle \mathfrak{q}, [\mathfrak{a}]\mathfrak{q} \mid \mathfrak{a} \in \mathsf{A}, \mathfrak{q} \in Q \})$

Modal parity automata

- $\mathcal{A} = \langle Q, q_\star, \Delta, \rho \rangle$ with
 - ${\scriptstyle \blacksquare} \ \rho: Q \rightarrow \mathbb{N}$
 - $\blacksquare \Delta: Q \to \mathcal{P}(\mathcal{C})$ where
 - $\blacksquare \ \mathcal{C} = \mathcal{P}(Q \cup \{ \langle a \rangle q, [a]q \mid a \in A, q \in Q \})$

Exemple: there will always be infinitely many b's $f(X,Y) = \langle b \rangle_P(Y) \cup \bigcap_{c \neq b} [c]_P(X), \quad g(Y) = \mu X.f(X,Y), \quad h = \nu Y.g(Y)$

$$\begin{split} &Q = \{q_X, q_Y\}, q_\star = q_Y, \rho(q_X) = 1, \rho(q_Y) = 2, \\ &\Delta(q_X) = \{\{\langle b \rangle q_Y\}, \{[c]q_X \mid c \neq b\}\} \text{ (to be read } \langle b \rangle q_Y \lor (\bigwedge_{c \neq b} [c]q_X)) \\ &\Delta(q_Y) = \{\{q_X\}\} \text{ (to be read } q_X) \end{split}$$

 $[\![\mathcal{A}]\!]_P\subseteq \mathcal{P}(S)$

 $\mathsf{P} \models \mathcal{A} \Leftrightarrow s_\star \in \llbracket \mathcal{A} \rrbracket_\mathsf{P}$

 $[\![\mathcal{A}]\!]_P \subseteq \mathcal{P}(S)$

 $P \models \mathcal{A} \Leftrightarrow s_\star \in \llbracket \mathcal{A} \rrbracket_P$

How to define (compute) $[A]_P$?

 $[\![\mathcal{A}]\!]_P \subseteq \mathcal{P}(S)$

$$P \models \mathcal{A} \Leftrightarrow s_\star \in \llbracket \mathcal{A} \rrbracket_P$$

How to define (compute) $[A]_P$? Using parity games or the μ -calculus

 $[\![\mathcal{A}]\!]_P \subseteq \mathcal{P}(S)$

$$P \models \mathcal{A} \Leftrightarrow s_\star \in \llbracket \mathcal{A} \rrbracket_P$$

How to define (compute) $[A]_P$? Using parity games or the μ -calculus

 $\llbracket \mathcal{A} \rrbracket_{\mathcal{P}}$ is the component of index q_{\star} of the solution $\{E_q \mid q \in Q\}$ of a system of fixed-point equations $\Sigma(\mathcal{A}, P)$.

Systems of equations

Let \mathcal{A} whose set of states is $Q = \{q_1, \dots, q_n\}$ such that $i < j \Rightarrow \rho(q_i) \le \rho(q_j)$. With any P we associate the system of n fixed-point equations $\Sigma(\mathcal{A}, P)$:

$$X_{1} \stackrel{\theta_{1}}{=} f_{1}(X_{1}, \dots, X_{n})$$

$$\vdots$$

$$X_{i} \stackrel{\theta_{i}}{=} f_{i}(X_{1}, \dots, X_{n})$$

$$\vdots$$

$$X_{n} \stackrel{\theta_{n}}{=} f_{n}(X_{1}, \dots, X_{n})$$
where $\theta_{i} = \mu$ if i is odd, ν if i is even

and $f_i(X_1,\ldots,X_n)$ is the monotonic function from $\mathcal{P}(S)^n$ to $\mathcal{P}(S)$ obtained by substituting in $\Delta(q_i)$

- $\blacksquare \cup \text{ for } \lor, \text{ and } \cap \text{ for } \land,$
- $\blacksquare X_{\mathfrak{j}}$ for $q_{\mathfrak{j}}$
- $\ \ \, \blacksquare \ \, \langle a \rangle_P(X_{\mathfrak{j}}) \text{ for } \langle a \rangle q_{\mathfrak{j}} \text{, and } [a]_P(X_{\mathfrak{j}}) \text{ for } [a]q_{\mathfrak{j}}$

Computation (by induction on n) of the solution $Sol(\Sigma) \subseteq \mathcal{P}(S)^n$ of

$$\Sigma = \begin{cases} X_1 & \stackrel{\theta_1}{=} & f_1(X_1, X_2, \dots, X_n) \\ X_2 & \stackrel{\theta_2}{=} & f_2(X_1, X_2, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(X_1, X_2, \dots, X_n) \end{cases}$$

Computation (by induction on n) of the solution $Sol(\Sigma) \subseteq \mathcal{P}(S)^n$ of

$$\Sigma = \begin{cases} X_1 & \stackrel{\theta_1}{=} & f_1(X_1, X_2, \dots, X_n) \\ X_2 & \stackrel{\theta_2}{=} & f_2(X_1, X_2, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(X_1, X_2, \dots, X_n) \end{cases}$$

Compute the monotonic function

 $g_1(X_2,\ldots,X_n)=\theta_1X_1.f_1(X_1,X_2,\ldots,X_n)\in \mathcal{P}(S)^{n-1}\to \mathcal{P}(S)$

Computation (by induction on n) of the solution $Sol(\Sigma) \subseteq \mathcal{P}(S)^n$ of

$$\Sigma = \begin{cases} X_1 & \stackrel{\theta_1}{=} & f_1(X_1, X_2, \dots, X_n) \\ X_2 & \stackrel{\theta_2}{=} & f_2(X_1, X_2, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(X_1, X_2, \dots, X_n) \end{cases}$$

Compute the monotonic function

 $g_1(X_2,\ldots,X_n) = \theta_1 X_1.f_1(X_1,X_2,\ldots,X_n) \in \mathcal{P}(S)^{n-1} \to \mathcal{P}(S)$

Compute the solution $\{E_2, \ldots E_n\}$ of Σ'

$$\Sigma' = \begin{cases} X_2 & \stackrel{\theta_2}{=} & f_2(g_1(X_2, \dots, X_n), X_2, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(g_1(X_2, \dots, X_n), X_2, \dots, X_n) \end{cases}$$

Computation (by induction on n) of the solution $Sol(\Sigma) \subseteq \mathcal{P}(S)^n$ of

$$\Sigma = \begin{cases} X_1 & \stackrel{\theta_1}{=} & f_1(X_1, X_2, \dots, X_n) \\ X_2 & \stackrel{\theta_2}{=} & f_2(X_1, X_2, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(X_1, X_2, \dots, X_n) \end{cases}$$

Compute the monotonic function $g_1(X_2, \dots, X_n) = \theta_1 X_1.f_1(X_1, X_2, \dots, X_n) \in \mathcal{P}(S)^{n-1} \to \mathcal{P}(S)$

Compute the solution $\{E_2, \ldots E_n\}$ of Σ'

The solution of Σ is $\{g_1(E_2, \ldots, E_n), E_2, \ldots, E_n\}$

The modal µ-calculus

Syntax

 $t ::= true |false|X|t \lor t|t \land t|\langle a \rangle t|[a]t|\mu X.t|\nu X.t|$

Semantics

For any transition system P, for any term t and for any sequence $X_1, \ldots X_n$ which contains all the free variables of t we define by induction the monotonic function $[t]_P(X_1, \ldots, X_n) : \mathcal{P}(S)^n \to \mathcal{P}(S).$ Note: if t is closed then $[t]_P() \subseteq S$.

The modal µ-calculus

Syntax

 $t ::= true | false | X | t \lor t | t \land t | \langle a \rangle t | [a] t | \mu X.t | \nu X.t$

Semantics

For any transition system P, for any term t and for any sequence $X_1, \ldots X_n$ which contains all the free variables of t we define by induction the monotonic function $[t]_P(X_1, \ldots, X_n) : \mathcal{P}(S)^n \to \mathcal{P}(S)$. Note: if t is closed then $[t]_P() \subseteq S$.

■ if
$$t = true$$
 (resp false) then $[t]_P(E_1, ..., E_n) = S$ (resp. Ø)

If
$$t = X_i$$
 then $[t]_P(E_1, \ldots, E_n) = E_i$

J if
$$t = t_1 \lor t_2$$
 (resp. ∧) then
 $[t]_P(E_1,...,E_n) = [t_1]_P(E_1,...,E_n) \cup [t_2]_P(E_1,...,E_n)$ (resp. ∩)

If
$$t = \langle a \rangle t'$$
 (resp [a]) then $[t](E_1, \ldots, E_n) = \langle a \rangle_P([t']_P(E_1, \ldots, E_n))$ (resp. $[a]_P$)

■ if $t = \theta X.t'$ then $[t]_P(E_1, ..., E_n) = \theta X.[t']_P(X, E_1, ..., E_n).$

MOVEP 2006

Bordeaux, june 2006
$\label{eq:proposition} \frac{\text{Proposition}}{\llbracket \mathcal{A} \rrbracket_P = \llbracket t_{\mathcal{A}} \rrbracket().$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \displaystyle \underset{\left[\mathcal{A}\right]\right]_{P}}{\text{Proposition For any automaton } \mathcal{A} \text{ there exists a } \mu \text{-term } t_{\mathcal{A}} \text{ such that for any } P, \\ \hline \\ \displaystyle \underset{\left[\mathcal{A}\right]\right]_{P}}{\left[\left[\mathcal{A}\right]\right]_{P}} = \left[\!\left[t_{\mathcal{A}}\right]\!\right](). \\ \\ \text{Let } t_{i} = \Delta(q_{i}) \text{ and } f_{i}(X_{1}, \ldots, X_{n}) = \left[\!\left[t_{i}\right]\!\right]_{P}(X_{1}, \ldots, X_{n}) \\ \\ \\ \displaystyle \underset{\left[\begin{array}{c} X_{2} \end{array} \right]_{2}}{\left[\left[\begin{array}{c} X_{1} \end{array} \right]_{2} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{1} \right]_{2} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{2} \\ \\ \\ \displaystyle \underset{\left[\begin{array}{c} X_{n} \end{array} \right]_{2}}{\left[\begin{array}{c} \alpha_{1}\right]_{2} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{2} \\ \\ \\ \\ \displaystyle \underset{\left[\begin{array}{c} X_{n} \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \\ \\ \displaystyle \underset{\left[\begin{array}{c} X_{n} \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \\ \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \\ \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \\ \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{1}, \ldots, \alpha_{n}\right]_{n} \\ \\ \\ \\ \end{array} \right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\begin{array}{c} \alpha_{1} \left[\begin{array}{c} \alpha_{1}\right]_{n} \left[\begin{array}{c} \alpha_{1}\right]_$

Proposition For any automaton A there exists a μ -term t_A such that for any P, $\llbracket \mathcal{A} \rrbracket_{\mathsf{P}} = \llbracket \mathsf{t}_{\mathcal{A}} \rrbracket().$ Let $t_i = \Delta(q_i)$ and $f_i(X_1, ..., X_n) = [t_i]_P(X_1, ..., X_n)$ $\Sigma(\mathcal{A}) \begin{cases} X_{1} \quad \stackrel{\theta_{-}}{=} \quad t_{1} \\ X_{2} \quad \stackrel{\theta_{-}}{=} \quad t_{2} \\ \vdots \\ X_{n} \quad \stackrel{\theta_{n}}{=} \quad t_{n} \end{cases} \qquad \Sigma(\mathcal{A}, \mathsf{P}) \begin{cases} X_{1} \quad \stackrel{=}{=} \quad f_{1}(X_{1}, \dots, X_{n}) \\ X_{2} \quad \stackrel{\theta_{-}}{=} \quad f_{2}(X_{1}, \dots, X_{n}) \\ \vdots \\ X_{n} \quad \stackrel{\theta_{n}}{=} \quad f_{n}(X_{1}, \dots, X_{n}) \end{cases}$ $t_{1}' = \theta_{1}X_{1}.t_{1} \qquad g_{1}(X_{2}, \dots, X_{n}) = \theta_{1}X_{1}.f_{1}(X_{1}, \dots, X_{n}) = [t_{1}']_{\mathsf{P}}(X_{2}, \dots, X_{n}) \end{cases}$ $t_{1}' = \theta_{1}X_{1}.t_{1} \qquad g_{1}(X_{2}, \dots, X_{n}) = \theta_{1}X_{1}.f_{1}(X_{1}, \dots, X_{n}) = [t_{1}']_{\mathsf{P}}(X_{2}, \dots, X_{n}) \end{cases}$ $t_{1}' = \theta_{1}X_{1}.t_{1} \qquad g_{1}(X_{2}, \dots, X_{n}) = \theta_{1}X_{1}.f_{1}(X_{1}, \dots, X_{n}) = [t_{1}']_{\mathsf{P}}(X_{2}, \dots, X_{n}) \end{cases}$ $\Sigma'(\mathcal{A}) \begin{cases} X_{2} \quad \stackrel{\theta_{-}}{=} \quad t_{2}[X_{1} := t_{1}'] \\ \vdots \\ X_{n} \quad \stackrel{\theta_{-}}{=} \quad t_{n}[X_{1} := t_{1}'] \\ \vdots \\ X_{n} \quad \stackrel{\theta_{-}}{=} \quad f_{2}(g_{1}(X_{2}, \dots, X_{n}), X_{2}, \dots, X_{n}) \end{cases}$ $\Sigma'(\mathcal{A}, \mathsf{P}) \begin{cases} X_{2} \quad \stackrel{\theta_{-}}{=} \quad f_{2}(g_{1}(X_{2}, \dots, X_{n}), X_{2}, \dots, X_{n}) \\ \vdots \\ X_{n} \quad \stackrel{\theta_{-}}{=} \quad f_{n}(g_{1}(X_{2}, \dots, X_{n}), X_{2}, \dots, X_{n}) \end{cases}$ $\Sigma(\mathcal{A}, P) \begin{cases} X_1 & \stackrel{\theta_1}{=} & f_1(X_1, \dots, X_n) \\ X_2 & \stackrel{\theta_2}{=} & f_2(X_1, \dots, X_n) \\ \vdots & & \\ X_n & \stackrel{\theta_n}{=} & f_n(X_1, \dots, X_n) \end{cases}$

 $\label{eq:proposition} \frac{\text{Proposition}}{[\![t]\!]_P()=[\![\mathcal{A}_t]\!]_P} \text{ for any } P.$

 $\label{eq:proposition} \frac{\text{Proposition}}{[\![t]\!]_P()=[\![\mathcal{A}_t]\!]_P} \text{ for any } P.$

An incomplete automaton is an automaton containing some states (say q_1, \ldots, q_k) for which ρ and Δ are not defined. (Obviously, q_* must be defined.) The "syntactic" solution of $\Sigma(\mathcal{A})$ contains the free variables X_1, \ldots, X_k . Thus $[\mathcal{A}]_P(X_1, \ldots, X_k)$ is a mapping from $\mathcal{P}(S)^k \to \mathcal{P}(S)$.

 $\frac{\text{Proposition}}{[\![t]\!]_P()=[\![\mathcal{A}_t]\!]_P} \text{ for any } P.$

Lemma For any term t whose free variables are X_1, \ldots, X_k , there is an incomplete automaton \mathcal{A} with undefined states q_1, \ldots, q_k , such that for any P, $[\mathcal{A}]_P(X_1, \ldots, X_k) = [t]_P(X_1, \ldots, X_k).$

 $\frac{\text{Proposition}}{[\![t]\!]_P()=[\![\mathcal{A}_t]\!]_P} \text{ for any } P.$

Lemma For any term t whose free variables are X_1, \ldots, X_k , there is an incomplete automaton \mathcal{A} with undefined states q_1, \ldots, q_k , such that for any P, $[\mathcal{A}]_P(X_1, \ldots, X_k) = [t]_P(X_1, \ldots, X_k).$

Proof by induction. Let $\mathcal{A}^{(i)}$ be "equivalent" to $t_i(X_1^{(i)}, \ldots, X_{k_i}^{(i)})$.

- The automaton equivalent to $\mu X_1^{(i)}.t_1$ is obtained by taking $q_1^{(i)}$ as initial state and defining it by $\rho(q_1^{(i)})$ equal to any odd number greater than $\rho(q_{k+1}^{(i)}), \ldots, \rho(q_{k+n}^{(i)})$, and $\Delta(q_1^{(i)}) = \{\{q_{\star}^{(i)}\}\}.$
- The automaton equivalent to $t_1 \vee t_2$ (resp. $t_1 \wedge t_2$) is obtained by adding to the "disjoint" union of $\mathcal{A}^{(1)}$ and $\mathcal{A}^{(2)}$ the new initial state q_* of rank 0 defined by $\Delta(q_*) = \{\{q_*^{(1)}\}, \{q_*^{(2)}\}\}$ (resp. $\Delta(q_*) = \{\{q_*^{(1)}, q_*^{(2)}\}\}$)

MSOL-definability

Basic predicates $V_{\alpha}(x,y)$: $V_{\alpha}(s,s')$ is true in P if $(s, \alpha, s') \in T$

MSOL-definability

Basic predicates $V_{\alpha}(x,y)$: $V_{\alpha}(s,s')$ is true in P if $(s, \alpha, s') \in T$

 $\begin{array}{ll} \hline Proposition & \mbox{For any }\mu\mbox{-term }t, \mbox{ whose free variables are }\{X_1,\ldots,X_n\}, \mbox{ there}\\ \hline exists a formula \ F_t(z,X_1,\ldots,X_n) \mbox{ in MSOL such that }F_t(s,E_1,\ldots,E_n) \mbox{ is true in }P\\ \hline iff \ s\in [\![t]\!]_P(E_1,\ldots,E_n) \end{array}$

MSOL-definability

Basic predicates $V_{\alpha}(x,y)$: $V_{\alpha}(s,s')$ is true in P if $(s, \alpha, s') \in T$

 $\begin{array}{ll} \hline Proposition & \mbox{For any }\mu\mbox{-term }t, \mbox{ whose free variables are }\{X_1,\ldots,X_n\}, \mbox{ there} \\ \hline exists a formula \mbox{ }F_t(z,X_1,\ldots,X_n) \mbox{ in MSOL such that }F_t(s,E_1,\ldots,E_n) \mbox{ is true in }P \\ \hline iff \ s \in [\![t]\!]_P(E_1,\ldots,E_n) \end{array}$

Let $G_t(Z, X_1, \ldots, X_n)$ be equal to $\forall z \in Z, F_t(z, X_1, \ldots, X_n)$ (so that $G_t(E, E_1, \ldots, E_n)$ true in P iff $E = \llbracket t \rrbracket_P(E_1, \ldots, E_n)$)

If
$$t = \langle a \rangle X$$
 then $F_t(z, X) = \exists x \in X : V_a(z, x)$

If
$$t = \mu X_1 \cdot t'$$
 then $F_t(z, X_2, \dots, X_n) = \exists Z : z \in Z \land G_{t'}(Z, Z, X_2, \dots, X_n) \land \forall X(G_{t'}(X, X, X_2, \dots, X_n) \Rightarrow Z \subseteq X).$

■ etc.

39

is false

$$F(X) = \forall x (x \in X \Longrightarrow V_{\alpha}(x, x))$$

In $P_1 = (s_* \xrightarrow{a} s_*)$, F(E) is true iff $E = \{s_*\}$ In $P_2 = (s_* \xrightarrow{a} s \xrightarrow{a} s_*)$, F(E) is true iff $E = \emptyset$

is false

$$F(X) = \forall x (x \in X \Longrightarrow V_{\alpha}(x, x))$$

In $P_1 = (s_* \xrightarrow{a} s_*)$, F(E) is true iff $E = \{s_*\}$ In $P_2 = (s_* \xrightarrow{a} s \xrightarrow{a} s_*)$, F(E) is true iff $E = \emptyset$

For any closed μ -term t, $[t]_{P_1} = \emptyset$ iff $[t]_{P_2} = \emptyset$

40

is false

$$F(X) = \forall x (x \in X \Longrightarrow V_{\alpha}(x,x))$$

In P₁ = ($s_{\star} \xrightarrow{a} s_{\star}$), F(E) is true iff E = { s_{\star} } In P₂ = ($s_{\star} \xrightarrow{a} s \xrightarrow{a} s_{\star}$), F(E) is true iff E = Ø

For any closed μ -term t, $[t]_{P_1} = \emptyset$ iff $[t]_{P_2} = \emptyset$

For any subset E of $S_1 = \{s_{\star}\}$, let E' be the subset of $S_2 = \{s_{\star}, s\}$ such that $E' = \emptyset$ if $E = \emptyset$ and $E' = S_2$ if $E = S_1$. Then for any t, $E = [t]_{P_1}(E_1, \dots, E_n)$ iff $E' = [t]_{P_2}(E'_1, \dots, E'_n)$.

Bordeaux, june 2006

is false

$$F(X) = \forall x (x \in X \Longrightarrow V_{\alpha}(x,x))$$

In $P_1 = (s_* \xrightarrow{a} s_*)$, F(E) is true iff $E = \{s_*\}$ In $P_2 = (s_* \xrightarrow{a} s \xrightarrow{a} s_*)$, F(E) is true iff $E = \emptyset$

For any closed μ -term t, $[t]_{P_1} = \emptyset$ iff $[t]_{P_2} = \emptyset$

Inductive proof of: For any t, $E = [t]_{P_1}(E_1, \ldots, E_n)$ iff $E' = [t]_{P_2}(E'_1, \ldots, E'_n)$.

$$\langle a \rangle_{P_1}(\emptyset) = \langle a \rangle_{P_2}(\emptyset) = [a]_{P_1}(\emptyset) = [a]_{P_2}(\emptyset) = \emptyset \langle a \rangle_{P_1}(S_1) = [a]_{P_1}(S_1) = S_1, \quad \langle a \rangle_{P_2}(S_2) = [a]_{P_2}(S_2) = S_2$$

■ Let $t = \mu X_1 . t'$, let $f_i(X_1, X_2) = [t']_{P_i}(X_1, X_2)$ and $g_i(X_2) = [t]_{P_i}(X_2)$. Let $E_1 = g_1(E_2) = f_1(E_1, E_2)$.

If
$$E_1 = \emptyset = f_1(\emptyset, E_2)$$
 then $\emptyset = f_2(\emptyset, E'_2)$ hence and $g_2(E'_2) = \emptyset = E'_1$.

□ If
$$E_1 = S_1$$
 then $f_1(\emptyset, E_2) = S_1$, hence
 $S_2 = f_2(\emptyset, E'_2) \subseteq f_2(g_2(E'_2), E'_2) = g_2(E'_2)$, hence $g_2(E'_2) = S_2 = E'_1$.

Bisimulation

A bisimulation between P and P' is a relation $R \subseteq S \times S'$ such that

- $\blacksquare R(s_{\star}, s_{\star}')$
- \blacksquare If $R(s,s^{\,\prime})$ then

Bisimulation

A bisimulation between P and P' is a relation $R \subseteq S \times S'$ such that

- $\blacksquare R(s_{\star}, s_{\star}')$
- If R(s, s') then ■ $\forall (s, a, s_1) \in T, \exists (s', a, s'_1) \in T' : R(s_1, s'_1),$ ■ $\forall (s', a, s'_1) \in T', \exists (s, a, s_1) \in T : R(s_1, s'_1),$

$$\begin{split} R &= \{(s_{\star},s_{\star}),(s_{\star},s)\} \text{ is a bisimulation between } P_1 = (s_{\star} \xrightarrow{a} s_{\star}) \text{ and } \\ P_2 &= (s_{\star} \xrightarrow{a} s \xrightarrow{a} s_{\star}). \end{split}$$

Bisimulation

A bisimulation between P and P' is a relation $R \subseteq S \times S'$ such that

- $\blacksquare R(s_{\star}, s_{\star}')$
- If R(s, s') then ■ $\forall (s, a, s_1) \in T, \exists (s', a, s'_1) \in T' : R(s_1, s'_1),$ ■ $\forall (s', a, s'_1) \in T', \exists (s, a, s_1) \in T : R(s_1, s'_1),$

$$\begin{split} R &= \{(s_{\star},s_{\star}),(s_{\star},s)\} \text{ is a bisimulation between } P_1 = (s_{\star} \xrightarrow{a} s_{\star}) \text{ and } \\ P_2 &= (s_{\star} \xrightarrow{a} s \xrightarrow{a} s_{\star}). \end{split}$$

Fact

- If R is a bisimulation between P and P' then R^{-1} is a bisimulation between P'and P.
- If R is a bisimulation between P and P', and if R' is a bisimulation between P' and P'', then $R \circ R'$ is a bisimulation between P and P''

Saturated sets

Let R be a bisimulation between P and P'. A subset E of S is R-saturated if $R^{-1}(R(E)) = E$. (i.e. if $R(s_1, s')$ and $R(s_2, s')$ then $s_1 \in E \Leftrightarrow s_2 \in E$).

Saturated sets

Let R be a bisimulation between P and P'. A subset E of S is R-saturated if $R^{-1}(R(E)) = E$. (i.e. if $R(s_1, s')$ and $R(s_2, s')$ then $s_1 \in E \Leftrightarrow s_2 \in E$).

Fact

- If E is R-saturated then R(E) is R^{-1} -saturated.
- \blacksquare Ø and S are R-saturated.
- if E_1 and E_2 are R-saturated then $E_1 \cup E_2$, $E_1 \cap E_2$, and $S E_1$ are R-saturated.

Bisimulation invariance

<u>Proposition</u> Let P and P'. If there is a bisimulation between P and P' then for any (closed) automaton \mathcal{A} , $P \models \mathcal{A} \leftrightarrow P' \models \mathcal{A}$.

<u>Lemma</u> Let R be a bisimulation between P and P'. For any μ -term t and any R-saturated subsets E_1, \ldots, E_n ,

• the set $E = [t]_P(E_1, \dots, E_n)$ is R-saturated.

■
$$R(E) = [t]_{P'}(R(E_1), ..., R(E_n)).$$

Corollary $[\![\mathcal{A}]\!]_P$ is R-saturated and $[\![\mathcal{A}]\!]_{P'} = R([\![\mathcal{A}]\!]_P)$ hence $[\![\mathcal{A}]\!]_P = R^{-1}([\![\mathcal{A}]\!]_{P'})$.

All the previous definitions ($[A]_P$, $[t]_P(X_1, ..., X_n)$, bisimulation) and results (parity automata $\Leftrightarrow \mu$ -terms \Rightarrow MSOL formulas, bisimulation invariance) are still valid for infinite transition systems.

All the previous definitions ($[A]_P$, $[t]_P(X_1, ..., X_n)$, bisimulation) and results (parity automata $\Leftrightarrow \mu$ -terms \Rightarrow MSOL formulas, bisimulation invariance) are still valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

All the previous definitions ($[A]_P$, $[t]_P(X_1, ..., X_n)$, bisimulation) and results (parity automata $\Leftrightarrow \mu$ -terms \Rightarrow MSOL formulas, bisimulation invariance) are still valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model ($\exists P : P \models A$) then it has a finite model.

All the previous definitions ($[A]_P$, $[t]_P(X_1, ..., X_n)$, bisimulation) and results (parity automata $\Leftrightarrow \mu$ -terms \Rightarrow MSOL formulas, bisimulation invariance) are still valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model ($\exists P : P \models A$) then it has a finite model.

Fact MSOL has NOT the finite model property.

All the previous definitions ($[A]_P$, $[t]_P(X_1, ..., X_n)$, bisimulation) and results (parity automata $\Leftrightarrow \mu$ -terms \Rightarrow MSOL formulas, bisimulation invariance) are still valid for infinite transition systems.

Example: P is in bisimulation with its (infinite) tree unfolding TU(P).

Finite model property If A has a model ($\exists P : P \models A$) then it has a finite model.

Fact MSOL has NOT the finite model property.

$$\begin{split} V(x,y) &= \bigvee_{\alpha \in A} V_{\alpha}(x,y), \quad F = \forall x, \exists y : V(x,y) \quad \land \quad \forall y((\exists x : V(x,y)) \Rightarrow \\ \forall x, x', (V(x,y) \land V(x',y) \Rightarrow x = x')) \\ \text{(i.e. each state is of indegree at most 1)} \end{split}$$

F is true in P iff P is an infinite tree.

MSOL and bisimulation invariance

A MSOL-formula $F(\mathbf{x})$ with one free variable is bisimulation-invariant if

for any P, P', any bisimulation R between P and P' and any $(s, s') \in R$ one has: F(s) is true in P iff F(s') is true in P'

MSOL and bisimulation invariance

A MSOL-formula F(x) with one free variable is bisimulation-invariant if for any P, P', any bisimulation R between P and P' and any $(s, s') \in R$ one has: F(s) is true in P iff F(s') is true in P'

<u>Theorem</u> [Janin-Walukiewicz, 1996]

If F(x) is bisimulation-invariant then there exists \mathcal{A} such that for any P and s, F(s) is true in P iff $s \in [\![\mathcal{A}]\!]_P$.

A closed μ -term t is satisfiable (denoted by $\models t$) if there is a P such that $P \models t$ (i.e. $s_{\star} \in [\![t]\!]_P)$

<u>Fact</u> \models t iff \exists P : $[t]_P \neq \emptyset$ (One can take any state in $[t]_P$ as initial state)

A closed μ -term t is satisfiable (denoted by $\models t$) if there is a P such that $P \models t$ (i.e. $s_{\star} \in [\![t]\!]_P)$

<u>Fact</u> \models t iff \exists P : $[t]_P \neq \emptyset$ (One can take any state in $[t]_P$ as initial state)

Let t and t' be two closed terms.

- $\blacksquare \models t \lor t' \text{ iff } \models t \text{ or } \models t' \text{ (because } \llbracket t \lor t' \rrbracket_P = \llbracket t \rrbracket_P \lor \llbracket t' \rrbracket_P)$
- $\blacksquare \models t \land t' \text{ implies} \models t \text{ yet} \models t'$

A closed μ -term t is satisfiable (denoted by $\models t$) if there is a P such that $P \models t$ (i.e. $s_{\star} \in [\![t]\!]_P)$

<u>Fact</u> \models t iff \exists P : $[t]_P \neq \emptyset$ (One can take any state in $[t]_P$ as initial state)

Let t and $t^{\,\prime}$ be two closed terms.

$$\blacksquare \models t \lor t' \text{ iff } \models t \text{ or } \models t' \text{ (because } \llbracket t \lor t' \rrbracket_P = \llbracket t \rrbracket_P \lor \llbracket t' \rrbracket_P)$$

 $\blacksquare \models t \land t' \text{ implies} \models t \text{ yet} \models t'$

The converse is not always true:

 $\models \langle a \rangle$ true and $\models [a]$ false but $\not\models \langle a \rangle$ true $\land [a]$ false

A closed μ -term t is satisfiable (denoted by $\models t$) if there is a P such that $P \models t$ (i.e. $s_{\star} \in [\![t]\!]_P)$

<u>Fact</u> \models t iff \exists P : $[t]_P \neq \emptyset$ (One can take any state in $[t]_P$ as initial state)

Let t and $t^{\,\prime}$ be two closed terms.

$$\blacksquare \models t \lor t' \text{ iff } \models t \text{ or } \models t' \text{ (because } \llbracket t \lor t' \rrbracket_P = \llbracket t \rrbracket_P \lor \llbracket t' \rrbracket_P)$$

 $\blacksquare \models t \land t' \text{ implies} \models t \text{ yet} \models t'$

The converse is not always true:

```
\models \langle a \rangletrue and \models [a]false but \not\models \langle a \rangletrue \land [a]false
```

and not always false:

```
\models \langle a \rangletrue and \models [b]false but \models \langle a \rangletrue \land [b]false
```

Some conjunction are problematic ($\langle a \rangle$ true \land [a]false), some are not problematic ($\langle a \rangle$ true \land [a]false)

Some conjunction are problematic ($\langle a \rangle$ true \land [a]false), some are not problematic ($\langle a \rangle$ true \land [a]false)

But some are of unknown status: $\nu X.t(\mu Y.(X \land t'(X, Y)))$

47

Some conjunction are problematic ($\langle a \rangle$ true $\land [a]$ false), some are not problematic ($\langle a \rangle$ true $\land [a]$ false)

But some are of unknown status: $\nu X.t(\mu Y.(X \land t'(X, Y)))$

A $\mu\text{-term}$ is guarded if each occurrence of a variable X appears in a subterm $\langle a\rangle X$ or [a]X

Some conjunction are problematic ($\langle a \rangle$ true $\land [a]$ false), some are not problematic ($\langle a \rangle$ true $\land [a]$ false)

But some are of unknown status: $\nu X.t(\mu Y.(X \land t'(X, Y)))$

A $\mu\text{-term}$ is guarded if each occurrence of a variable X appears in a subterm $\langle a\rangle X$ or [a]X

<u>Theorem</u> Each μ -term is (effectively) equivalent to a guarded one

 $\begin{array}{ll} \underline{Corollary} \text{ Each automaton is equivalent to a guarded automaton } \mathcal{A} \\ \hline \text{i.e.} & \text{where } \Delta: Q \rightarrow \mathcal{P}(\mathcal{C}) \text{ where } \mathcal{C} = \mathcal{P}(\{\langle \alpha \rangle q, [\alpha]q \mid \alpha \in A, q \in Q\}) \text{ instead of } \\ \mathcal{C} = \mathcal{P}(\textbf{Q} \cup \{\langle \alpha \rangle q, [\alpha]q \mid \alpha \in A, q \in Q\}) \end{array}$
Simulation Theorem

Elimination (in a guarded automaton) of all problematic conjunctions (powerset construction + histories + MacNaughton)

Simulation Theorem

Elimination (in a guarded automaton) of all problematic conjunctions (powerset construction + histories + MacNaughton)

```
Theorem [Janin-Walukiewicz, 1995]
```

Every automaton is equivalent to an automaton \mathcal{A} such that any conjunction $c \in \Delta(q)$ has the form $\bigwedge_{a \in A} \langle a \rangle q_1 \wedge \cdots \wedge \langle a \rangle q_n \wedge [a](q_1 \vee \cdots \vee q_n)$